
CS662-2013S-13 Statistical Natural Language Processing 1

13-0: Outline

• n-grams

• Applications of n-grams

• review - Context-free grammars

• Probabilistic CFGs

• Information Extraction

13-1: Advantages of IR approaches

• Recall that IR-based approaches use the “bag of words” model.

• TFIDF is used to account for word frequency.

• Takes information about common words into account.

• Can deal with grammatically incorrect sentences.

• Gives us a “degree of correctness”, rather than just yes or no.

13-2: Disadvantges of IR

• No use of structural information.

• Not even co-occurrence of words

• Can’t deal with synonyms or dereferencing pronouns

• Very little semantic analysis.

13-3: Advantages of classical NLP

• Classical NLP approaches use a parser to generate a parse tree.

• This can then be used to transform knowledge into a form that can be reasoned with.

• Identifies sentence structure

• Easier to do semantic interpretation

• Can handle anaphora, synonyms, etc.

13-4: Disadvantages of class. NLP

• Doesn’t take frequency into account

• No way to choose between different parses for a sentence

• Can’t deal with incorrect grammar

• Requires a lexicon.

• Maybe we can incorporate both statistical information and structure.

13-5: n-grams

• The simplest way to add structure to our IR approach is to count the occurrence not only of single tokens, but of

sequences of tokens.

CS662-2013S-13 Statistical Natural Language Processing 2

• So far, we’ve considered words as tokens.

• A token is sometimes called a gram

• an n-gram model considers the probability that a sequence of n tokens occurs in a row.

• More precisely, it is the probability P(tokeni|tokeni−1, tokeni−2, ..., tokeni−n)

13-6: n-grams

• We could also choose to count bigrams, or 2-grams.

• The sentence “Every good boy deserves fudge” contains the bigrams “every good”, “good boy”, “boy deserves”,

“deserves fudge”

• We could continue this approach to 3-grams, or 4-grams, or 5-grams.

• Longer n-grams give us more accurate information about content, since they include phrases rather than single

words.

• What’s the downside here?

13-7: Sampling theory

• We need to be able to estimate the probability of each n-gram occurring.

• We could do this by collecting a corpus and counting the distribution of words in the corpus.

• If the corpus is too small, these counts may not be reflective of an n-gram’s true frequency.

• Many n-grams will not appear at all in our corpus.

• For example, if we have a lexicon of 20,000 words, there are:

• 20, 0002
= 400 million distinct bigrams

• 20, 0003
= 8 trillion distinct trigrams

• 20, 0004
= 1.6 × 1017 distinct 4-grams

13-8: Application: segmentation

• One application of n-gram models is segmentation

• Splitting a sequence of characters into tokens, or finding word boundaries.

• Speech-to-text systems

• Chinese and Japanese

• genomic data

• Documents with other characters, such as representing space.

• The algorithm for doing this is called Viterbi segmentation

• (Like parsing, it’s a form of dynamic programming)

13-9: Viterbi segmentation

CS662-2013S-13 Statistical Natural Language Processing 3

input: a string S, a 1-gram distribution P

n = length(S)

words = array[n+1]

best = array[n+1] = 0.0 * (n+1)

best[0] = 1.0

for i = 1 to n

for j = 0 to i - 1

word = S[j:i] ##get the substring from j to i

w = length(word)

if (P[word] x best[i - w] >= best[i])

best[i] = P[word] x best[i - w]

words[i] = word

now get best words

result = []

i = n

while i > 0

push words[i] onto result

i = i - len(words[i])

return result, best[i]

13-10: Example

Input ‘‘cattlefish’’ P(cat) = 0.1, P(cattle) = 0.3, P(fish) = 0.1.

all other 1-grams are 0.001.

best[0] = 1.0

i: 1, j: 0 word: ’c’. w = 1

0.001 * 1.0 >= 0.0

best[1] = 0.001

words[1] = ’c’

i = 2, j = 0 word = ’ca’, w = 2

0.001 * 1.0 >= 0.0

best[2] = 0.001

words[2] = ’ca’

i = 2, j = 1 word = ’a’, w = 1

0.001 * 0.001 < 0.001

13-11: Example

i = 3, j = 0, word=’cat’, w=3

0.1 * 1.0 > 0.0

best[3] = 0.1

words[3] = ’cat’

i = 3, j = 1, word = ’at’, w=2

0.001 * 0.001 < 0.1

i = 3, j = 2, word = ’t’, w=1

0.001 * 0.001 < 0.1

13-12: Example

i=4, j=0, word=’catt’, w=4

0.001 * 1.0 > 0.0

best[4] = 0.001

words[4] = ’catt’

i=4,j=1 word = ’att’, w=3

0.001 * 0.001 < 0.001

i=4, j=2, word=’tt’, w=2

0.001 * 0.001 < 0.001

i=4, j=3, word=’t’, w=1

0.001 * 0.1 < 0.001

13-13: Example

i=5, j=0, word=’cattl’, w=5

0.001 * 1.0 > 0.0

best[5] = 0.001

word[5] = ’cattl’

i=5, j=1, word=’attl’, w=4

0.001 * 0.001 < 0.001

i=5, j=2, word=’ttl’, w=3

0.001 * 0.001 < 0.001

i=5, j=3, word=’tl’, w=2

0.001 * 0.1 < 0.001

i=5, j=4, word=’l’, w=1

0.001 * 0.001 < 0.001

13-14: Example

i=6, j=0, word=’cattle’, w=6

0.3 * 1.0 > 0.0

word[6] = ’cattle’

best[6] = 0.3

etc ...

CS662-2013S-13 Statistical Natural Language Processing 4

13-15: Example

best: [1.0 0.001 0.001 0.1 0.001 0.001 0.3 0.001 0.001 0.2]

words: [’c’ ’ca’ ’cat’ ’catt’ ’cattl’ ’cattle’ ’cattlef’ ’cattlefi’

’cattlefis’ ’fish’]

i = 10

push ’fish’ onto result

i = i-4

push ’cattle’ onto result

i = 0

13-16: What’s going on here?

• The Viterbi algorithm is searching through the space of all combinations of substrings.

• States with high probability mass are pursued.

• The ’best’ array is used to prevent the algorithm from repeatedly expanding portions of the search space.

• This is an example of dynamic programming (like chart parsing)

13-17: Application: language detection

• n-grams have also been successfully used to detect the language a document is in.

• Approach: consider letters as tokens, rather than words.

• Gather a corpus in a variety of different languages (Wikipedia works well here.)

• Process the documents, and count all two-grams.

• Estimate probabilities for Language L with count
#o f 2−grams

Call this PL

• Assumption: different languages have characteristic two-grams.

13-18: Application: language detection

• To classify a document by language:

• Find all two-grams in the document. Call this set T.

• For each language L, the likelihood that the document is of language L is: PL(t1) × PL(t2) × ... × PL(tn)

• The language with the highest likelihood is the most probable language.

• (this is a form of Bayesian inference - we’ll spend more time on this later in the semester.)

13-19: Going further

• n-grams and segmentation provide some interesting ideas:

• We can combine structure with statistical knowledge.

• Probabilities can be used to help guide search

• Probabilities can help a parser choose between different outcomes.

• But, no structure used apart from colocation.

• Maybe we can apply these ideas to grammars.

13-20: Reminder: CFGs

• Recall context-free grammars from the last lecture

• Single non-terminal on the left, anything on the right.

CS662-2013S-13 Statistical Natural Language Processing 5

• S -¿ NP VP

• VP -¿ Verb — Verb PP

• Verb -¿ ’run’ — ’sleep’

• We can construct sentences that have more than one legal parse.

• “Squad helps dog bite victim”

• CFGs don’t give us any information about which parse to select.

13-21: Probabalistic CFGs

• A probabalisitc CFG is just a regular CFG with probabilities attached to the right-hand sides of rules.

• The have to sum up to 1

• They indicate how often a particular non-terminal derives that right-hand side.

13-22: Example

S -> NP VP (1.0)

PP -> P NP (1.0)

VP -> V NP (0.7)

VP -> VP PP (0.3)

P -> with (1.0)

V -> saw (1.0)

NP -> NP PP (0.4)

NP -> astronomers (0.1)

NP -> stars (0.18)

NP -> saw (0.04)

NP -> ears (0.18)

NP -> telescopes (0.1)

13-23: Disambiguation

• The probability of a parse tree being correct is just the product of each rule in the tree being derived.

• This lets us compare two parses and say which is more likely.

13-24: Disambiguation

CS662-2013S-13 Statistical Natural Language Processing 6

astronomers

S (1.0)

NP(0.1) VP (0.7)

V (1.0) NP (0.4)

saw NP (0.18) PP(1.0)

stars P(1.0) NP(0.18)

with ears

P1 = 1.0*0.1*0.7*1.0*0.4*0.18*1.0*1.0*0.18 = 0.0009072

astronomers

S (1.0)

NP(0.1)

VP (0.7)

V (1.0)

saw

NP (0.18)

PP(1.0)

stars

P(1.0) NP(0.18)

with ears

P1 = 1.0*0.1*0.3*0.7*1.0*0.18*1.0*1.0*0.18 = 0.00068

VP (0.3)

13-25: Faster Parsing

• We can also use probabilities to speed up parsing.

• Recall that both top-down and chart pasring proceed in a primarily depth-first fashion.

• They choose a rule to apply, and based on its right-hand side, they choose another rule.

• Probabilities can be used to better select which rule to apply, or which branch of the search tree to follow.

• This is a form of best-first search.

13-26: Information Extraction

• An increasingly common application of parsing is information extraction.

• This is the process of creating structured information (database or knowledge base entries) from unstructured

text.

13-27: Information Extraction

• Example:

• Suppose we want to build a price comparison agent that can visit sites on the web and find the best deals

on flatscreen TVs?

• Suppose we want to build a database about video games. We might do this by hand, or we could write a

program that could parse wikipedia pages and insert knowledge such as madeBy(Blizzard, WorldOfWar-

craft) into a knowledge base.

13-28: Extracting specific information

• A program that fetches HTML pages and extracts specfic information is called a scraper.

• Simple scrapers can be built with regular expressions.

• For example, prices typically have a dollar sign, some digits, a period, and two digits.

• $[0-9]+.[0-9]{2}

CS662-2013S-13 Statistical Natural Language Processing 7

• This approach will work, but it has several limitations

• Can only handle simple extractions

• Brittle and page specific

13-29: Steps in information extraction

• A more robust system will need to take advantage of sentence structure.

• A typical system will have the following components:

• Sentence segmenter.

• Tokenizer.

• Part of speech tagger.

• Chunker.

• Named Entity detector.

• Relation extractor.

13-30: POS tagging

• There are a number of approaches to part-of-speech tagging.

• We can write rules based on a word’s structure. (“-ed” is a past tense verb)

• We can learn rules based on labeled data.

• Most common tag - ZeroR.

• We can use contextual information - n-grams.

• We can combine them, and learn more complex rules.

13-31: Chunking

• A chunk is a larger part of a sentence, such as a noun phrase.

• This will help us identify entities and relations.

• We can identify chunks with a chunk grammar:

• NP : < DT >? < JJ > ∗ < NN >

• Once we’ve tagged words with parts of speech, we use a parser to identify chunks.

• This can be done top-down or bottom up.

13-32: Named Entities

• These are noun phrases that refer to specific individuals, places, or organizations.

• How can we identify them, and what type of entity they are?

• e.g. University of San Francisco: NP - Organization, Barack Obama: NP - Person.

• Maybe we have a gazetteer (lookup table), but this is very brittle.

• We can also build a classifier to label entities.

• Input: token with a part-of-speech label

CS662-2013S-13 Statistical Natural Language Processing 8

• Output: whether it is a Named Entity, and its type.

13-33: Relation extraction

• Once we have Named Entities, we would like to know relations between them.

• In(USF, San Francisco)

• We can write a set of augmented regular expressions to do this.

• ¡ORG¿(.+)VP in(.+)¡CITY¿ will match ¡organization¿ verb-phrase in blah ¡city¿.

• There will be false positives; getting this highly accurate takes some care.

• We can trade off precision and accuracy here - more restrictive regular expressions might miss some relations,

but avoid adding false positives.

13-34: Summary

• We can combine the best of probabilistic and classical NLP approaches.

• n-grams take advantage of co-occurrence information.

• Segmenting, language detection

• CFGs can be augmented with probabilities

• Speeds parsing, deals with ambiguity.

• Information extraction is an increasingly common application.

• Still no discussion of semantics; just increasingly complex syntax processing.

