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17-0: Probabilistic Reasoning
o Given:

o Set of conditional probabilities (P(¢1|d), etc)
o Set of prior probabilities (P(d))
e Conditional independence information (P(¢1|d, 12) = P(t1|d))

e We can calculate any quantity that we like
e Problems:

e Hard to know exactly what data we need
¢ Even given sufficient data, calculations can be complex — especially dealing with conditional independence

17-1: Bayesian Networks
Bayesian Networks are:

o Clever encoding of conditional independence information
e Mechanical, “turn the crank” method for calculation
e Can be done by a computer
Nothing “magic” about Bayesian Networks 17-2: Directed Acyclic Graphs
e We will encode conditional independence information using Directed Acyclic Graphs (or DAGs)

o While we will use causal language to give intuitive justification, these DAGs are not necessarily causal (more
on this later)

e Three basic “junctions”

NN T

17-3: Head-to-Tail
A

.

B

.

C

e “Causal Chain”
e Rain — Wet Pavement — Slippery Pavement

e ALCO)
e (AL C|B)
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17-4: Tail-to-Tail

B
A C
e “Common Cause”

e Reading Ability < Age — Shoe Size

e ALCO)
e (A 1L C|B)

17-5: Head-to-Head

A C
B
e “Common Effect”

e Rain — Wet Grass « Sprinkler

e (ALC
e (A4 C|B)
17-6: Head-to-Head
Rai n Spri nkl er
Wt G ass
Sl ugs

e Also need to worry about descendants of head-head junctions.
e (Rain 1 Sprinkler)
e (Rain [ Sprinkler | Slugs)

17-7: Markovian Parents
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e V is an ordered set of variables X1, X5, ...X,.
e P(V)is ajoint probability distribution over V
e Define the set of Markovian Parents of variable X;, PA; as:

e Minimal set of predecessors of X; such that
o P(Xj|Xy,...X;1) = P(X;|PA))

e The Markovian Parents of a variable X are often (but not always) the direct causes of X
17-8: Markovian Parents & Joint
e For any set of variables Xj, ... X, we can calculate any row of the joint:

o P(x1,..x,) = P(x1)P(x2]x1)P(x3]x1, x2) . ...
P(xn|xl, -x25 .. xn—l)

o Using Markovian parents

o P(xi,..xn) = P(x1)P(x2|PA2)P(x3|PA3) . ..
P(xu|PAy)

17-9: Markovian Parents & DAGs
e We can create a DAG which represents conditional independence information using Markovian parents.

o Each variable is a node in the graph
e For each variable X, add a directed link from all elements in PA; to X;

17-10: Burglary Example
o [ want to know if my house has been robbed

I install an alarm

e Have two neighbors, John & Mary, who call me if they hear my alarm

Small earthquakes could also set off the alarm

Sometimes, small earthquakes are reported on the radio

Variables:

o Burglary, Earthquake, News Report, Alarm, John Calls, Mary Calls
17-11: DAG Example

Burgl ary Ear t hquake
Al arm News Report
John Mar y

Call's Call's
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17-12: Markovian Parents & DAGs

e The order that we consider variables is important!
o Causal ordering gives “best” DAGS, but non-causal works, too

e Example: Mary Calls, John Calls, News Report, Alarm, Burglary, Earthquake

17-13: DAG Example
e Order: Mary Calls, John Calls, News Report, Alarm, Burglary, Earthquake

Mary
Cal | s
John
Cal | s
Nevvs Report
Al arm

Burglary ——— _ eart hquake
17-14: Markovian Parents & DAGs

o The order that we consider variables is important!
o Causal ordering gives “best” DAGS, but non-causal works, too

o Example: News Report, Burglary, Mary Calls, Alarm, John Calls, Earthquake

17-15: DAG Example
e Order: News Report, Burglary, Mary Calls, Alarm, John Calls, Earthquake

News Report Burglary

N

Mary
Calls

/.

Al ar m

T~

John

N

Ear t hquake
17-16: Markovian Parents & DAGs

e The order that we consider variables is important!
o Causal ordering gives “best” DAGS, but non-causal works, too

e Example: John Calls, Mary Cals, Alarm, Earthquake, News Report, Burglary,
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17-17: DAG Example

e Order: John Calls, Mary Cals, Alarm, Earthquake, News Report, Burglary,

John
Calls
Mary
Calls
Al arm

\

Ear t hquake

/ O\

Burgl ary News Report

17-18: DAGs & Cond. Independence

e Given a DAG of Markovian Parents, we know that every variable X; is independent of its ancestors, given its
parents

e We also know quite a bit more
17-19: d-separation To determine if a variable X is conditionally independent of Y given a set of variables Z:
e Examine all paths between X and Y in the graph

e Each node along a path can be “open” or “blocked”

e A node at a head-to-tail or tail-to-tail junction is open if the node is not in Z, and closed otherwise.

e A node at a head-to-head junction is open if the node or any of its descendants is not in Z, and closed
otherwise.

17-20: d-separation Examples
A B F G
NG
E
Ny

(ALLG)?

17-21: d-separation Examples
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Qgi\dZ/G

E bl ocked

bl ocked \D/ \H -

Bl ocked

(ALLG?

17-22: d-separation Examples

F1 Pat h
Bl ocked
bl ocked

(ALLG!

17-23: d-separation Examples
A B F G
NN
E
NN

(AlLG D)?

17-24: d-separation Examples
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A B F G
qOen\C/\E/‘/

Gpen Pat h

E;D/ \H Open

(AL G D)

17-25: d-separation Examples

A B F G
\C/\E//
AN

17-26: Bayesian Networks
To build a Bayesian Network:

o Select variables
e Order variables
e Normally want a causal ordering
o Compute Markovian parents for each variable

e Compute P(X;|PA;) for each variable

17-27: Test / Courier Example



CS662-2013S-17 Bayesian Networks

PD)|D=~-d D=d
1 0.999  0.001

Di sease
P(TID) |[T=~ T=t
D=~d |0.9 0.1
= d (0.1 0.9
Test

P(CJT) |[C=~c C=c¢
= ~t ‘0.95 0.05

0.1 0.9

17-28: Message Passing
¢ Once we have our Bayesian Network, we will calculate probabilities using message passing

e Example:
e [eader of a group of troops wants to know how many soldiers are in the group
e Sends a “count” message down line of soldiers

o Gets a count reply back

17-29: Message Passing

Platoon leader counting soldiers 17-30: Message Passing
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X\ ¥ \ /ST T

? P9
AN
A A A/

Platoon leader counting soldiers, from middle of line 17-31: Message Passing

A

2 3 1
Platoon leader counting soldiers, with self—generating count signal 17-32: Message Passing

1 2 3
VYA YA

N{EEYYY

5 4 3 2 1

Leaderless Counting 17-33: Using Bayesian Networks

(O

NC

Q

e A patient receives a “positive” result from the courier. Does the patient have the disease?
e Whatis P(d|c)?
e In general, what is P(d|e), where e is all the evidence that we have?

17-34: Breaking Up Evidence

e Break evidence e into two pieces

e “causal evidence” or “causal support”, e*

”—

e “diagnostic evidence” or “evidential support” e
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P(dle})P(e;ld, e

P(det,e;) = —
_ P(d|e})P(e;|d)
P(e,)
= aP(d|e})P(e;|d)
17-35: Renaming
. P(dle)P(e;\d, et
P(dle;,e;) = —
_ P(d|e})P(e;|d)
P(e,)
= «aP(dle))P(ey|d)
o 7(x) = P(xley)
o A(x) = P(e;|x)
Thus, P(dle) = an(d)A(d)
17-36: Renaming
P(xlel,e;) = aP(xlel)P(e;|x)

anm(x)A(x)

o m(x) is the “message” from upstream.
e A(x) is the “message” from downstream.

17-37: Calculating 7(d)

o 11(d) is the probability that D = d, given upstream evidence for D
o All we have for upstream evidence is the prior probability for D
o 11(d) = Prior Probability on d = P(d) !

17-38: Calculating A(d)

Ad) = Pleyld)
= ) Plegld, nP(la)

teT

= > Pl InPId)

teT

= D AWP(d)

teT
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17-39: Calculating A(d)

Ad) = Z/l(t)P(tld)

teT

) = HDPCd) + JOPUD 4 Cotetaing 1)
Ad) = ZT:A(t)P(tld)
AD) = [A(=d), A(d)]
17-41: Calculating A(D)
Ad) = Z/l(t)P(tld)

teT

A(D) = [A(~d), Ad)]
= [A(=0)P(=tl=d) + A P(l|=d), A=) P(=tld) + AD)P(tld)]
17-42: Calculating A(D)

Ad) = Z/l(t)P(tld)

teT

A(D) = [A(~d), Ad)]
= [A(=0)P(=t|=d) + A1) P(tf|=d), A(=0) P(=it|d) + A1) P(1ld)]
| P(=tl=d)  P(tl=d) || A(=1)
| P(=tld)  P(ld) H A(t) ]
17-43: Calculating A(D)

Ad) = Z/l(t)P(tld)

teT

AD) = [A(=d), A(d)]
= [A=)P(=t|=d) + ADP(t|=d), A=) P(=itld) + A1) P(tld)]
_| P(=tl=d)  P(l=d) || A(=1)
| P(=tld)  P(tld) A1)
= P(TID)AT)
= MppA(T)
17-44: Calculating A(D)

o A(D) = MypA(T)
o A(T) = MrA(C)
o AC)=?

e What is the evidence that C = =¢, C = ¢?
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e We know that C = ¢
e AC)=10,1]

17-45: Test / Courier Example
P(D)JD=~d D=d
10.999  0.001

D sease
P(T|ID [T =~ T=1t
D=~d |0.9 0.1
D= d|0.1 0.9
Test
P(C]T) |[C=~c C=c¢c
T =~t |0.95 0. 05
T= 1t ]0.1 0.9
AMO= [0, 1] Couri er
17-46: Test / Courier Example
P(D|D=~d D=d
| 0.999  0.001
Di sease
P(TID) |[T=~t T=t
D=~d|0.9 0.1
D= d|0.1 0.9
MT)= [0.05, 0.9] Test
P(CJT) |[C=~c C=c¢c
T =~t [0.95 0. 05
T= 1t (0.1 0.9
AMO= [0, 1] Couri er

17-47: Test / Courier Example
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PD)|D=~d D=d
|0.999  0.001

AMD) = [0.135, 0.815] Di sease
P(TID |[T=~t T=t
D=~d |0.9 0.1
= d|0.1 0.9
MT)= [0.05, 0.9] Test
P(CJT) |[C=~c C=c¢
T=~t |0.95 0.05
T= 1t 0.1 0.9
AMO= [0, 1] Couri er

17-48: Calculating P(Dl|e)
e AC)=10,1]
o AT)= McgriA(C)=10.05,0.9]
o AD) = MqppA(T) =[0.135,0.815]
From before, 7(D) = P(D) = [0.999, 0.001]
e P(Dle) = an(D)A(D)
e P(Dle) = 2[0.999,0.001][0.135,0.815]
e P(Dle) = 2[0.134865,0.000815]
o o =1/0.13568
o P(Dle) = [0.993993, 0.006007]
17-49: Calculating P(T|e)

o What if we wanted to calculate the probability that the test actually was positive, given that the courier delivered
a positive result?

e P(Tle) = an(T)A(T)
e We know A(T) from before
e What is n(T)?

17-50: Calculating 7(r)

nt) = P(de)
= ZP(t|d,e,+)P(d|€r+)

deD

= ). P(ld, e})P(dle})

deD

= > P(d)Pdle])

deD

= Z P(tld)r(d)

deD
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17-51: Calculating 7 (r)
n(t) = P(tle/)
= ) P(dd, e/ )P(dle})

deD
= > P(ld, e})P(dle})
deD

= ) Pid)P(dle))

deD

- Z P(tld)r(d)

deD

n(-t) = P(=t|=~d)P(=d|e}) + P(—tld)P(d|e})
n(t) = P(t|=d)P(~dle}) + P(tld)P(dle})
17-52: Calculating 7(T)

a(t) = ZP(t|d)7r(d)

deD

m(T) = [m(=1), m(1)]
= [P(=tl=d)n(=d) + P(=tld)n(d), P(t|=d)m(~d) + P(tld)n(d)]
_ P(=t|=d)  P(t|=d)
= CD. 2D pgay” pira) ]

17-53: Calculating 7(T)

(D)= [0.999, 0.001] PD|D=~d D=d
|0.999  0.001
A(D)= [0.135, 0.815] Di sease
P(TID |T=~t T=t
D=~d|0.9 0.1
n(T)= [0.8992, 0.1008] D= d|0.1 0.9
A(T)= [0.05, 0.9] Test
P(CT) |[C=~ C=c
T=-~t [0.95 0.05
T=1t |01 0.9
AMQO= [0, 1] Couri er

17-54: Calculating BEL(T) = P(Te)

e BEL(T) = an(T)A(T)

o AT) =1[0.05,0.9]
o n(T) = [0.8992,0.1008]

o 2(T)A(T) = [0.04496,0.09072]

o a = 1/(0.04496 + 0.09072) = 1/(0.13568)

e BEL(T)=1[0.331368,0.668632]

17-55: Computation for Chains
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o Calculating 7 messages:

e m(root) = Prior on root
o For any other variable X with parent P,
n(X) = n(P)Mxp

o Calculating A messages:

e JA(leaf) = evidence for leaf
e ([1,1,...,1]if no evidence)
e For any other variable X with child C, A(X) = M¢xA(C)

17-56: Computation for Chains

e Send m messages down

e Send A messages up

o For any variable X, we can calculate BEL(X) = P(X|e) by multiplying the messages together, and normalizing

e P(Xle) = ad(X)n(X)
o (Pairwise multiplication)

17-57: Variable # of Values / Variables

e Of course, variables can have > 2 values

e Each variable can have a different number of values

e Disease Example

e Doctor test for a disease
o Test can be positive, indeterminate, or negative
e Doctor discusses the result with the courier

e Courier delivers result
17-58: Variable # of Values / Variables

P(D)|D=~-d D=d
| 0.999  0.001

Di sease
P(TID) |T=neg T =ind T = pos
D=~d|0.8 0.1 0.1
D= d|0.1 0.1 0.8
Test
P(CJT) |[C=~c C=c
T = neg |0.9 0.1
T=1ind [0.5 0.5
T = pos (0.1 0.9

Couri er
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17-59: Variable # of Values / Variables
P(D)|JD=~d D-=d
|0.999  0.001

A(D)=[0.22, 0.78] Di sease
P(T|D) |[T=neg T=ind T = pos
D=~d (0.8 0.1 0.1
D= d|0.1 0.1 0.8
MT)=[0.1, 0.5. 0.9] Test
P(CJT) |[C=~c C=c¢
T = neg |0.9 0.1
T =1ind |0.5 0.5
T = pos (0.1 0.9
Couri er
MO =[0, 1]
17-60: Computation for Trees
e What if some of the nodes have > 1 child?
o Example: Send message via two different couriers
17-61: Computation for Trees
P(D)|JD=~d D-=d
| 0.999  0.001
Di sease
P(TID) [T =~t T=t
D=~d|0.9 0.1
D= d|0.1 0.9

P(CIIT)|C= -~ C=c¢ Ic=~ C=c

st
I:’(CZIT)
T = ~t ‘0.95 0.05 0.95 0.05
t 0.1 t lo.1 0.9

T
Courierl Courier?2

17-62: Computation for Trees

e How do we send A messages in trees?

o Courier example: What is A(T"), which is the probability of the downstream evidence given the test, if both
couriers give a positive response?

o We will need to combine the messages that we get from each child into a single 1 message

o Use this A message to compute BEL(T)

o Use this A message to send a message to D
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17-63: Calculating A(r)

A =

17-64: Calculating A(T)

P(e; 11

Plecy, ecylt)

Plec,IDP(ec, )

D Plegiler, Pl Y Plegylea, P(elr)

c1eCl1 ceC2

D7 PlegilenPeiln) Y Plegslen)Plesl)

c1eCl1 ceC2

D AenPieiln Y Aea)P(ealr)

c1eC1 ceC2

A) = Y APl Y APl

17-65: Computation for Trees

c1eC1 ceC2

AT) McyrA(C1) x McyrA(C2)

= Aci(T) * Ac2(T)

P(D|D=~d D=4d

[0.999  0.001

A(D) = [0.08325, 0.72925] Di sease
P(TID |T=~t T=t
D=~d|0.9 0.1
D= d|0.1 0.9
A(T) = [0.0025, 0.81]
Test
A M =10.05, 0.9] A (M =10.05, 0.9]
P(ClT|C=~ C=c¢c PRI |cC=~ C=c¢c
T=~t [0.95 0.05 T=~t [0.95 0.05
T=t|0.1 0.9 T= 1t |01 0.9
Courierl Courier?2
A(Cl) =[0,1] AMC2) =10,1]

17-66: Computation for Trees

e BEL(D) = an(D)A(D)

e (D) =1[0.999,0.001]
e A(D) =[0.08325,0.72925]
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e 7(D)A(D) =[0.0831667,0.00072925]
o o =1/(0.08389595)

e BEL(D) =1[0.991308,0.008692]
17-67: Sending m Messages in Trees

o 1(x) = P(xle})

e Thatis, n(x) is P(X = x), given all upstream evidence from X

|
YN

X
e 1(X) = P(Pley)P(X|P)
o 71(P) * Aother children of P(P)Mx)p
* (BEL(P)/Ax(P))Mxp
e Pairwise division
17-68: Sending m Messages in Trees
e What is the probability that Courier 1 will give a positive result, given that Courier 2 gave a positive result?
e P(Clle)
o Evidence e is the prior probability for disease, and the fact that Courier 2 gave a positive result
17-69: Sending m Messages in Trees
e What is the probability that Courier 1 will give a positive result, given that Courier 2 gave a positive result?
e P(Clle)
o Evidence e is the prior probability for disease, and the fact that Courier 2 gave a positive result
o 1(C1) = an(T) * Aca(T)Mcyr

17-70: Computation for Trees
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P(D|D=~d D=4d
[0.999  0.001

nO) = [0.999, 0.001] D sease
P(TID |T=~t T=t
D= ~d ‘0.9 0.1
n(T) = [0.8992, 0.1008] D= d]o.1 0.9
Test
TN A (M) = [.04496, 0.09072] oM =10.05 0.9]
P(ClT)|[C=~c C=c¢c P(C2|T)|C—~c C=c¢
T = ~t 095 005 T=~t [0.95 0.05
T=t = t |0.1 0.9
Courierl Courier2

AMC2) =10,1]
nCl) = a[0.051884, 0.083896]
= [0.382952, 0.619232]

17-71: Computation for Trees
e For root variable R, 7(R) = Prior on R
e For unobserved leaf variables L, A(L) = [1,1,...,1]
e For leaf variables L observed to have the value I, A(L) = [0,...,0,1,0,...0] — the k™ element is 1, all others

are 0

e Pass m and A messages through the tree

e Multiply 7 message by A messages from other childen, them multiply the result by the link matrix

e Multiply link matrix by A messages
e Multiple Children — multiply 4 messages

17-72: Multiple Parents (Polytrees)

e Add a gender variable
o Test for disease depends upon gender, as well as disease state
e Need to expand link matrix for test to include gender

e Need P(1|g, d) for all values of ¢, g, d

17-73: Multiple Parents (Polytrees)
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PD|D=~d D=d PO|G=m G=f
|0.999  0.001 0.5 05
Di sease Gender
P(TID.G [T =~t T=t
~d, m (0.9 0.1
~d, f 0.8 0.2
d, m |0.1 0.9
d, f 0.2 0.8
Test
P(CT) |[C=~c C=c¢
T =~t [0.95 0. 05
T= 1t 1]0.1 0.9
Couri er

17-74: Calculating 7() in Polytrees
e For each parent X, we have P(X|e*)
e P(D) =1[0.999,0.001], P(G)=[0.5,0,5]
e We need the probabilities for all combinations of parents
* P(=d,m), P(~d, f), P(d,m), P(d, f)
o Parents are independent given upstream evidence
® P(~d,m) = P(=d)P(m)
17-75: Calculating 7() in Polytrees

We have [P(~d), P(d)] and [P(m), P(f)]

We need [P(—d, m), P(—d, f), P(d, m), P(d, f)]

e P(=d,m) = P(~d)P(m), P(~d, ) = P(~d)P(f), etc.
P(~d,m) = 0.999 % 0.5, P(~d, ) = 0.999 « 0.5, P(d, m) = 0.001 % 0.5, P(d, f) = 0.001 * 0.5

P(D,G) =[0.4995,0.4995,0.0005.0.0005]

n(T) =

P(=t|=d,m) P(t|~d, m)
P(=tl=d, ) P(il~d, f)
P(=t|d, m) P(tld, m)
P(=tld, f)  P(d, f)

[ n(=d,m) n(~d,f) n(d,m) =(df) |

17-76: Calculating 7(T")

P(=t|-d,m) P(t|-d,m)
P(=tl=d, f)  P(il~d, f)
P(—tld, m) P(t|d, m)
P(=td, f)  P(ld, f)

| 7(=d,m) n(=d,f) n(d,m) n(df) |
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09 0.1
0.8 0.2
0.1 09
02 0.8

[0.4995 0.4995  0.0005 0.0005]

= [ 0.8493  0.1507
17-77: Calculating BEL(T)

e What is our belief that the test actually is positive, given that the courier delivers a positive message?

o (T) =1[0.8493,0.1507]

095 005 |[ 0
. )‘(T)z[ 0.1 09 H 1 ]

e A(T)=10.05,0.9]
e BEL(T) = @[0.42465,0.13565] (@ = 1/0.5603)
e BEL(T) =1[0.757898,0.242102]
17-78: Calculating 7() in Polytrees

o To calculate m(X), when X has multiple parents m:

e For each parent Y of X, calculate P(Y;ley,)
(Define message from Y to X, mx(Yx) = (Yile})
o If X is the only child of Yy, m(Yx) = n(Yy)
e If Y, has children C; ... C; other than X, then nx(Yy) = n(¥y) [1,=;.j Ac,(Y)
e (Thatis, mx(Yy) = BEL(Y)/Ax(Y))
e Combine the mx messages from all the parents, and multiply the result by the link matrix Mxyy, .y, to get

n(X)
17-79: Calculating A() in Polytrees
PD)|D=~d D=d P(O|G=m G-=f
|0.999  0.001 0.5 0.5
Di sease Gender

P(T|D,G [T =~ T=t

~d, m |0.9 0.1

~d, f (0.8 0.2

d m |0.1 0.9

d, f 0.2 0.8

P(QT) |[C=-~c C=c¢c
T=~t [0.95 0. 05
T= 1t |01 0.9

Couri er

17-80: Calculating A() in Polytrees

P(=tl~d,m) P(t|~d, m)
P(=tl~d, f)  P(tl~d, f)
P(=tld,m)  P(tld, m)
P(=td, ) P(tld, f)

e How do we send a A message up to Disease, given the combined link matrix for Disease and Gender?
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o If we knew that the gender was definitely male, then we could select the appropriate two rows, to create a 2x2
P(=t|=d,m) P(t|-d, m)

matrix: P(=tld,m)  P(tld, m)

17-81: Calculating A() in Polytrees

P(—tl-d,m) P(t|~d,m)
P(—t|~d, f)  P(l~d, f)
P(—tld,m)  P(t|d, m)
P(-dld, f)  P(1d, f)

o If we knew that the gender was definitely female, then we could select the appropriate two rows, to create a 2x2

P(_'tl_'d’ f) P(t|_'d’ f)

P(_'tld’ f) P(t|d’ f)

e How do we send a A message up to Disease, given the combined link matrix for Disease and Gender?

matrix:

17-82: Calculating A() in Polytrees

o If we knew the value of Gender, we could select the correct rows to build the appropriate link matrix to send the
lambda message.

e We don’t know for certain the value of Gender, but we do know the probability G, given evidence upstream of
T:

e P(Gler) = nr(G) = n(G) =[ 05 05 ]

. P(=t|=d, m)  P(m) + P(=t|=d, f)P(f) P(t|=d,m)P(m) + P(t|~d, f)P(f)
e We can then average the rows: | AR PO CA RN e

17-83: Calculating A() in Polytrees
Original Link Matrix Mrp ¢
P(T\D,C) | T=-t T=t
=d,m | 0.9 0.1
-d, f|0.8 0.2
d,m| 0.1 0.9
d, f|02 0.8
Revised Link Matrix Mrp
PTID) |T=-t T=t
-d | 0.85 0.15
d|0.15 0.85
17-84: Calculating BEL(D)

0.85 0.15 |[ 0.05
AD) = [0.15 0.85”0.9 ]
= [0.1775 0.7725]
a(D) = [ 0999 0.001 |
BEL(D) = an(D)A(D)

a[ 0.177323 0.0007725 ]
[ 0.99566 0.00434 ]

17-85: Complete Polytree Example
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PD|D=~d D=d P(G)|G—m G—f
|0.999  0.001
Di sease Gender
P(N G |[sue chris j ohn
PTIDQ |[T=~t T=t G=m 01 0.4 0.5
~d, m |0.9 0.1 T=f 05 0.4 0.1
~d, f |0.8 0.2
d, m |0.1 0.9
d, f |0.2 0.8
P(CT |C=~c C=c¢c
T=~t 0.9 0.1
T= t 0.1 0.9
Courlerl Courier2

(Courier link matrices the sane)

17-86: Complete Polytree Example

e Find BEL(D), given that:

e Both couriers return a positive result

e Patients name is John

17-87: Polytree Example: As

Test
P(CJT) |[C=~c C=c¢
T =~t [0.9 0.1
T= 1t |0.1 0.9
Courierl Courier?2
o AC)) = ACy) = [0,1]
e ¢, (T) =[0.1,0.9]
e 10,(T) =[0.1,0.9]
e AT)=1[0.01,0.81]
Gender
P(N| G |sue chris j ohn
G=m [0.1 0.4 0.5
T ="f1 0.5 0.4 0.1
Nanme

17-88: Polytree Example: As
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e A(N)=1[0,0,1]
e A(G)=1[05,0.1]

17-89: Polytree Example: As

17-90: Polytree Example: As

17-91: Polytree Example: As

17-92: Polytree Example: As

P(G)|G—m G=+f

O 5 0.5
CGender
n.I(G) = a[ 0. 25, 0.05] MG =1[0.5, 0.1]
= [0.8333, 0.1667]
Test
Di sease CGender
P(T| D, G |T =~t T =
~d, m (0.9 0.1
~d, f 0.8 0.2
d m [0.1 0.9 (G =[0.8333, 0.1667]
d, f 0.2 0.8
Test
MT)=[0.01, 0.81]
Di sease CGender
P(TID) |[T=~t T=
~d 0.8833 0.1167 rr.r(G) -[0.8333, 0.1667]
d 0.1167 0.8833
Test
A(T)=[0.01, O0.81]
A D) =[ 0. 1034, 0. 7166]
D sease Gender
P(T|D |T = ~t
~d 0. 8833 O 1167 TLI.(G) ~[0. 8333, 0.1667]
d 0.1167 0.8833
Test

A(T)=[0.01, 0.81]
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A(D)=[0.1034, 0.7166]
Di sease Gender

P(T|D) [T =~t T-=t
~d  [0.8833 0.1167
d [0.1167 0.8833

(G =[0.8333, 0.1667]

Test

A(T)=[0.01, 0.81
17-93: Polytree Example: As (D= ]

BEL(D) = an(D)A(D)

BEL(D) = «[0.999,0.001][0.1034,0.7166] ) .

BEL(D) = a[0.1033,0.0007] 17-94: Observing Non-Leaves
BEL(D) = «[0.9933,0.0067]

e What if we observe a variable that is not a leaf?
e For instance, we observe the actual test result
e Add a “phantom child”
o Set A message from that child to [0, ...,0,1,0,...,0], where the 1 occurs at the observed value

e This A message will override all other evidence for the node
17-95: Bayesian Network Failures

o Unfortunately, message passing only works for polytrees — DAGs whose underlying undirected graph has no
cycles.

o There are systems that we would like to model (including many medical systems) whose Markovian DAG does
not form a polytree.

e Message passing system is not guaranteed to produce correct results in non-polytrees.

17-96: Non-Polytree DAGs
Met ast ati ¢ Cancer

N

| ncreased t ot al Brai n Tunor
serum cal ci um

Sever e

Conma Headaches

e We can still calculate P(X;|PA)). ..
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17-97: Non-Polytree DAGs

) ) [08 0.2]
POLIM I =~ I =i P(BIM |b = ~b B =b
M= -~m|0.8 0.2 M= ~m|0. 95 0.05
M= m|0.2 0.8 /\ M= ml|o.8 0.2

P(HB) |[H=~h H
B—~b04 0.
.2

B =

o Ol

P(C 1, B) |C—~c c =
~i,~b ]0.95 0.05
~i, b 0.2 0.8

i,~b 0.2 0.8
i, b 0.2 0.8

o This is still enough information to answer queries — we just can’t use the message passing scheme
e why?
17-98: Monte Carlo Method

e For each root variable, pick a value for the variable according to the prior.
e For example:

e X is aroot variable
e m(X)=10.3,0.2,0.5]
e = Pick the value x; for X with probability 0.3, x, with probability 0.2, and x3 with probability 0.5

17-99: Monte Carlo Method

e Once a value for all of the parents of a node Z have been chosen, pick a value for the node based on the value of
the parents, and P(Z|PAy)

e For example:

o If Z has a single parent W

= [O, 1’0]?
PZW) |21 2 23
T 01 02 08
° PW) = 03 04 03
w3 09 0.1 0

e = Pick z; with probability 0.3, z, with probability 0.4, and z3 with probability 0.3.
17-100: Monte Carlo Method
o Once values have been chosen for all variables in the network, we have a single trial

e Do repeated trials, collect frequency information, and use that information to determine the values of queries.

17-101: Monte Carlo Method
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o Once values have been chosen for all variables in the network, we have a single trial
e Do repeated trials, collect frequency information, and use that information to determine the values of queries.

e To determine P(x]y), count the number of trials in which X = x and Y = y,and the number of trials in which
Y =y, and divide to get an estimate on P(x|y)

17-102: Monte Carlo Method

o Disadvantages of the Monte Carlo Method:

17-103: Monte Carlo Method

o Disadvantages of the Monte Carlo Method:

o Not guaranteed to find an exact probability in finite time.
o Can require exponential time to get good results.

o Calculating P(x|y) when both x and y are unlikely can require a very large number of iterations to get good
data.

17-104: Monte Carlo Method

o Advantages of the Monte Carlo Method:
17-105: Monte Carlo Method

o Advantages of the Monte Carlo Method:

e Does not require exponential space
¢ Do not need to modify the network (no node collapsing)
e Easy to implement

e And easy to parallelize

o Can get approximate answers “quickly”, and can get better answers with more time

17-106: Other Techniques

e There are a plethora of other techniques for doing inference in non-polytrees

e Combining nodes to remove cycles
e Methods using undirected graphs

e [ eave those methods unexplored
17-107: Applications of Bayesian Networks

o Diagnosis (widely used in Microsoft’s products)

Medical diagnosis

Spam filtering

Expert systems applications (plant control, monitoring)

Robotic control



