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17-0: Probabilistic Reasoning

• Given:

• Set of conditional probabilities (P(t1|d), etc)

• Set of prior probabilities (P(d))

• Conditional independence information (P(t1|d, t2) = P(t1|d))

• We can calculate any quantity that we like

• Problems:

• Hard to know exactly what data we need

• Even given sufficient data, calculations can be complex – especially dealing with conditional independence

17-1: Bayesian Networks

Bayesian Networks are:

• Clever encoding of conditional independence information

• Mechanical, “turn the crank” method for calculation

• Can be done by a computer

Nothing “magic” about Bayesian Networks 17-2: Directed Acyclic Graphs

• We will encode conditional independence information using Directed Acyclic Graphs (or DAGs)

• While we will use causal language to give intuitive justification, these DAGs are not necessarily causal (more

on this later)

• Three basic “junctions”

17-3: Head-to-Tail

A

B

C

• “Causal Chain”

• Rain→Wet Pavement→ Slippery Pavement

• (A 6y C)

• (A y C|B)
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17-4: Tail-to-Tail

A

B

C

• “Common Cause”

• Reading Ability← Age→ Shoe Size

• (A 6y C)

• (A y C|B)

17-5: Head-to-Head

A

B

C

• “Common Effect”

• Rain→Wet Grass← Sprinkler

• (A y C)

• (A 6y C|B)

17-6: Head-to-Head

Rain

Wet Grass

Sprinkler

Slugs

• Also need to worry about descendants of head-head junctions.

• (Rain y Sprinkler)

• (Rain 6y Sprinkler | Slugs)

17-7: Markovian Parents
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• V is an ordered set of variables X1, X2, . . .Xn.

• P(V) is a joint probability distribution over V

• Define the set of Markovian Parents of variable X j, PA j as:

• Minimal set of predecessors of X j such that

• P(X j|X1, . . .X j−1) = P(X j|PA j)

• The Markovian Parents of a variable X j are often (but not always) the direct causes of X j

17-8: Markovian Parents & Joint

• For any set of variables X1, . . .Xn, we can calculate any row of the joint:

• P(x1, ...xn) = P(x1)P(x2|x1)P(x3|x1, x2) . . .

P(xn|x1, x2, . . . xn−1)

• Using Markovian parents

• P(x1, ...xn) = P(x1)P(x2|PA2)P(x3|PA3) . . .

P(xn|PAn)

17-9: Markovian Parents & DAGs

• We can create a DAG which represents conditional independence information using Markovian parents.

• Each variable is a node in the graph

• For each variable X j, add a directed link from all elements in PA j to X j

17-10: Burglary Example

• I want to know if my house has been robbed

• I install an alarm

• Have two neighbors, John & Mary, who call me if they hear my alarm

• Small earthquakes could also set off the alarm

• Sometimes, small earthquakes are reported on the radio

• Variables:

• Burglary, Earthquake, News Report, Alarm, John Calls, Mary Calls

17-11: DAG Example

Burglary Earthquake

News ReportAlarm

John
Calls

Mary
Calls
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17-12: Markovian Parents & DAGs

• The order that we consider variables is important!

• Causal ordering gives “best” DAGS, but non-causal works, too

• Example: Mary Calls, John Calls, News Report, Alarm, Burglary, Earthquake

17-13: DAG Example

• Order: Mary Calls, John Calls, News Report, Alarm, Burglary, Earthquake

Burglary
Earthquake

News Report

Alarm

John
Calls

Mary
Calls

17-14: Markovian Parents & DAGs

• The order that we consider variables is important!

• Causal ordering gives “best” DAGS, but non-causal works, too

• Example: News Report, Burglary, Mary Calls, Alarm, John Calls, Earthquake

17-15: DAG Example

• Order: News Report, Burglary, Mary Calls, Alarm, John Calls, Earthquake

Burglary

Earthquake

News Report

Alarm

John
Calls

Mary
Calls

17-16: Markovian Parents & DAGs

• The order that we consider variables is important!

• Causal ordering gives “best” DAGS, but non-causal works, too

• Example: John Calls, Mary Cals, Alarm, Earthquake, News Report, Burglary,
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17-17: DAG Example

• Order: John Calls, Mary Cals, Alarm, Earthquake, News Report, Burglary,

Burglary

Earthquake

News Report

Alarm

John
Calls

Mary
Calls

17-18: DAGs & Cond. Independence

• Given a DAG of Markovian Parents, we know that every variable Xi is independent of its ancestors, given its

parents

• We also know quite a bit more

17-19: d-separation To determine if a variable X is conditionally independent of Y given a set of variables Z:

• Examine all paths between X and Y in the graph

• Each node along a path can be “open” or “blocked”

• A node at a head-to-tail or tail-to-tail junction is open if the node is not in Z, and closed otherwise.

• A node at a head-to-head junction is open if the node or any of its descendants is not in Z, and closed

otherwise.

17-20: d-separation Examples

A B

C

D

E

F G

H

(A  G)?
17-21: d-separation Examples
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A B

C

D

E

F G

H

(A  G)?

blocked

open

blocked

Path
Blocked

17-22: d-separation Examples

A B

C

D

E

F G

H

(A  G)!

blocked

open
open

Path
Blocked

17-23: d-separation Examples

A B

C

D

E

F G

H

(A  G|D)?
17-24: d-separation Examples
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A B

C

D

E

F G

H

(A  G|D)

Open

Open

Open
Path
Open

17-25: d-separation Examples

A B

C

D

E

F G

H
17-26: Bayesian Networks

To build a Bayesian Network:

• Select variables

• Order variables

• Normally want a causal ordering

• Compute Markovian parents for each variable

• Compute P(Xi|PAi) for each variable

17-27: Test / Courier Example
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Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

17-28: Message Passing

• Once we have our Bayesian Network, we will calculate probabilities using message passing

• Example:

• Leader of a group of troops wants to know how many soldiers are in the group

• Sends a “count” message down line of soldiers

• Gets a count reply back

17-29: Message Passing

12345
Platoon leader counting soldiers 17-30: Message Passing
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12321
Platoon leader counting soldiers, from middle of line 17-31: Message Passing

12321
Platoon leader counting soldiers, with self-generating count signal 17-32: Message Passing

12345

1 2 3 4 5

Leaderless Counting 17-33: Using Bayesian Networks

• A patient receives a “positive” result from the courier. Does the patient have the disease?

• What is P(d|c)?

• In general, what is P(d|e), where e is all the evidence that we have?

17-34: Breaking Up Evidence

• Break evidence e into two pieces

• “causal evidence” or “causal support”, e+

• “diagnostic evidence” or “evidential support” e−
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P(d|e+d , e
−
d ) =

P(d|e+
d
)P(e−

d
|d, e+

d
)

P(e−
d
)

=
P(d|e+

d
)P(e−

d
|d)

P(e−
d
)

= αP(d|e+d )P(e−d |d)

17-35: Renaming

P(d|e+d , e
−
d ) =

P(d|e+
d
)P(e−

d
|d, e+

d
)

P(e−
d
)

=
P(d|e+

d
)P(e−

d
|d)

P(e−
d
)

= αP(d|e+d )P(e−d |d)

• π(x) = P(x|e+x )

• λ(x) = P(e−x |x)

Thus, P(d|e) = απ(d)λ(d)

17-36: Renaming

P(x|e+x , e
−
x ) = αP(x|e+x )P(e−x |x)

= απ(x)λ(x)

• π(x) is the “message” from upstream.

• λ(x) is the “message” from downstream.

17-37: Calculating π(d)

• π(d) is the probability that D = d, given upstream evidence for D

• All we have for upstream evidence is the prior probability for D

• π(d) = Prior Probability on d = P(d) !

17-38: Calculating λ(d)

λ(d) = P(e−d |d)

=

∑

t∈T

P(e−d |d, t)P(t|d)

=

∑

t∈T

P(e−t |t)P(t|d)

=

∑

t∈T

λ(t)P(t|d)
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17-39: Calculating λ(d)

λ(d) =

∑

t∈T

λ(t)P(t|d)

λ(¬d) = λ(¬t)P(¬t|¬d) + λ(t)P(t|¬d)

λ(d) = λ(¬t)P(¬t|d) + λ(t)P(t|d)
17-40: Calculating λ(d)

λ(d) =

∑

t∈T

λ(t)P(t|d)

λ(D) = [λ(¬d), λ(d)]

17-41: Calculating λ(D)

λ(d) =

∑

t∈T

λ(t)P(t|d)

λ(D) = [λ(¬d), λ(d)]

= [λ(¬t)P(¬t|¬d) + λ(t)P(t|¬d), λ(¬t)P(¬t|d) + λ(t)P(t|d)]

17-42: Calculating λ(D)

λ(d) =

∑

t∈T

λ(t)P(t|d)

λ(D) = [λ(¬d), λ(d)]

= [λ(¬t)P(¬t|¬d) + λ(t)P(t|¬d), λ(¬t)P(¬t|d) + λ(t)P(t|d)]

=

[

P(¬t|¬d) P(t|¬d)

P(¬t|d) P(t|d)

][

λ(¬t)

λ(t)

]

17-43: Calculating λ(D)

λ(d) =

∑

t∈T

λ(t)P(t|d)

λ(D) = [λ(¬d), λ(d)]

= [λ(¬t)P(¬t|¬d) + λ(t)P(t|¬d), λ(¬t)P(¬t|d) + λ(t)P(t|d)]

=

[

P(¬t|¬d) P(t|¬d)

P(¬t|d) P(t|d)

][

λ(¬t)

λ(t)

]

= P(T |D)λ(T )

= MT |Dλ(T )

17-44: Calculating λ(D)

• λ(D) = MT |Dλ(T )

• λ(T ) = MC|Tλ(C)

• λ(C) = ?

• What is the evidence that C = ¬c,C = c?
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• We know that C = c

• λ(C) = [0, 1]

17-45: Test / Courier Example

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

λ(C)= [0, 1]

17-46: Test / Courier Example

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

λ(C)= [0, 1]

λ(T)= [0.05, 0.9]

17-47: Test / Courier Example
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Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

λ(C)= [0, 1]

λ(T)= [0.05, 0.9]

λ(D)= [0.135, 0.815]

17-48: Calculating P(D|e)

• λ(C) = [0, 1]

• λ(T ) = MC|Tλ(C) = [0.05, 0.9]

• λ(D) = MT |Dλ(T ) = [0.135, 0.815]

From before, π(D) = P(D) = [0.999, 0.001]

• P(D|e) = απ(D)λ(D)

• P(D|e) = α[0.999, 0.001][0.135, 0.815]

• P(D|e) = α[0.134865, 0.000815]

• α = 1/0.13568

• P(D|e) = [0.993993, 0.006007]

17-49: Calculating P(T |e)

• What if we wanted to calculate the probability that the test actually was positive, given that the courier delivered

a positive result?

• P(T |e) = απ(T )λ(T )

• We know λ(T ) from before

• What is π(T )?

17-50: Calculating π(t)

π(t) = P(t|e+t )

=

∑

d∈D

P(t|d, e+t )P(d|e+t )

=

∑

d∈D

P(t|d, e+d )P(d|e+d )

=

∑

d∈D

P(t|d)P(d|e+d )

=

∑

d∈D

P(t|d)π(d)
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17-51: Calculating π(t)

π(t) = P(t|e+t )

=

∑

d∈D

P(t|d, e+t )P(d|e+t )

=

∑

d∈D

P(t|d, e+d )P(d|e+d )

=

∑

d∈D

P(t|d)P(d|e+d )

=

∑

d∈D

P(t|d)π(d)

π(¬t) = P(¬t|¬d)P(¬d|e+
d
) + P(¬t|d)P(d|e+

d
)

π(t) = P(t|¬d)P(¬d|e+
d
) + P(t|d)P(d|e+

d
)

17-52: Calculating π(T )

π(t) =

∑

d∈D

P(t|d)π(d)

π(T ) = [π(¬t), π(t)]

= [P(¬t|¬d)π(¬d) + P(¬t|d)π(d), P(t|¬d)π(¬d)+ P(t|d)π(d)]

= [π(¬d), π(d)]

[

P(¬t|¬d) P(t|¬d)

P(¬t|d) P(t|d)

]

17-53: Calculating π(T )

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

λ(C)= [0, 1]

λ(T)= [0.05, 0.9]

λ(D)= [0.135, 0.815]

π(T)= [0.8992, 0.1008]

π(D)= [0.999, 0.001]

17-54: Calculating BEL(T ) = P(T |e)

• BEL(T ) = απ(T )λ(T )

• λ(T ) = [0.05, 0.9]

• π(T ) = [0.8992, 0.1008]

• π(T )λ(T ) = [0.04496, 0.09072]

• α = 1/(0.04496+ 0.09072) = 1/(0.13568)

• BEL(T ) = [0.331368, 0.668632]

17-55: Computation for Chains
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• Calculating π messages:

• π(root) = Prior on root

• For any other variable X with parent P,

π(X) = π(P)MX |P

• Calculating λ messages:

• λ(leaf) = evidence for leaf

• ([1, 1, . . . , 1] if no evidence)

• For any other variable X with child C, λ(X) = MC|Xλ(C)

17-56: Computation for Chains

• Send π messages down

• Send λ messages up

• For any variable X, we can calculate BEL(X) = P(X|e) by multiplying the messages together, and normalizing

• P(X|e) = αλ(X)π(X)

• (Pairwise multiplication)

17-57: Variable # of Values / Variables

• Of course, variables can have > 2 values

• Each variable can have a different number of values

• Disease Example

• Doctor test for a disease

• Test can be positive, indeterminate, or negative

• Doctor discusses the result with the courier

• Courier delivers result

17-58: Variable # of Values / Variables

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D) T = neg T = ind

0.8 0.1D = ~d

D =  d 0.1 0.1

P(C|T) C = ~c C = c

0.9 0.1T = neg

T = ind 0.5 0.5

T = pos

0.1

0.8

T = pos 0.1 0.9
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17-59: Variable # of Values / Variables

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D) T = neg T = ind

0.8 0.1D = ~d

D =  d 0.1 0.1

P(C|T) C = ~c C = c

0.9 0.1T = neg

T = ind 0.5 0.5

T = pos

0.1

0.8

T = pos 0.1 0.9

λ(C)=[0, 1]

λ(T)=[0.1, 0.5. 0.9]

λ(D)=[0.22, 0.78]

17-60: Computation for Trees

• What if some of the nodes have > 1 child?

• Example: Send message via two different couriers

17-61: Computation for Trees

Disease

Test

Courier2

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C2|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

Courier1

P(C1|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

17-62: Computation for Trees

• How do we send λ messages in trees?

• Courier example: What is λ(T ), which is the probability of the downstream evidence given the test, if both

couriers give a positive response?

• We will need to combine the messages that we get from each child into a single λ message

• Use this λ message to compute BEL(T )

• Use this λ message to send a message to D
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17-63: Calculating λ(t)

λ(t) = P(e−t |t)

= P(e−C1, e
−
C2|t)

= P(e−C1|t)P(e−C2|t)

=

∑

c1∈C1

P(e−C1|c1, t)P(c1|t)
∑

c2∈C2

P(e−C2|c2, t)P(c2|t)

=

∑

c1∈C1

P(e−C1|c1)P(c1|t)
∑

c2∈C2

P(e−C2|c2)P(c2|t)

=

∑

c1∈C1

λ(c1)P(c1|t)
∑

c2∈C2

λ(c2)P(c2|t)

17-64: Calculating λ(T )

λ(t) =

∑

c1∈C1

λ(c1)P(c1|t)
∑

c2∈C2

λ(c2)P(c2|t)

λ(T ) = MC1|Tλ(C1) ∗ MC2|Tλ(C2)

= λC1(T ) ∗ λC2(T )

17-65: Computation for Trees

Disease

Test

Courier2

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C2|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

Courier1

P(C1|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

λ(C1) = [0,1] λ(C2) = [0,1]

λ     (T) = [0.05, 0.9]λ     (T) = [0.05, 0.9]
C1 C2

λ (T) = [0.0025, 0.81]

λ (D) = [0.08325, 0.72925]

17-66: Computation for Trees

• BEL(D) = απ(D)λ(D)

• π(D) = [0.999, 0.001]

• λ(D) = [0.08325, 0.72925]
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• π(D)λ(D) = [0.0831667, 0.00072925]

• α = 1/(0.08389595)

• BEL(D) = [0.991308, 0.008692]

17-67: Sending πMessages in Trees

• π(x) = P(x|e+x )

• That is, π(x) is P(X = x), given all upstream evidence from X

X

P
π(x)

• π(X) = P(P|e+
X
)P(X|P)

• π(P) ∗ λother children of P(P)MX |P

• (BEL(P)/λX(P))MX |P

• Pairwise division

17-68: Sending πMessages in Trees

• What is the probability that Courier 1 will give a positive result, given that Courier 2 gave a positive result?

• P(C1|e)

• Evidence e is the prior probability for disease, and the fact that Courier 2 gave a positive result

17-69: Sending πMessages in Trees

• What is the probability that Courier 1 will give a positive result, given that Courier 2 gave a positive result?

• P(C1|e)

• Evidence e is the prior probability for disease, and the fact that Courier 2 gave a positive result

• π(C1) = απ(T ) ∗ λC2(T )MC1|T

17-70: Computation for Trees
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Disease

Test

Courier2

P(D) D = ~d D = d

0.0010.999

P(T|D) T = ~t T = t

0.9 0.1D = ~d

D =  d 0.1 0.9

P(C2|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

Courier1

P(C1|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

λ(C2) = [0,1]

λ     (T) = [0.05, 0.9]π(T)λ     (T) = [.04496, 0.09072]
C2 C2

π(T) = [0.8992, 0.1008]

π(D) = [0.999, 0.001]

π(C1) = α[0.051884, 0.083896]
      = [0.382952, 0.619232]

17-71: Computation for Trees

• For root variable R, π(R) = Prior on R

• For unobserved leaf variables L, λ(L) = [1, 1, . . . , 1]

• For leaf variables L observed to have the value lk, λ(L) = [0, . . . , 0, 1, 0, . . .0] – the kth element is 1, all others

are 0

• Pass π and λ messages through the tree

• Multiply π message by λ messages from other childen, them multiply the result by the link matrix

• Multiply link matrix by λ messages

• Multiple Children – multiply λ messages

17-72: Multiple Parents (Polytrees)

• Add a gender variable

• Test for disease depends upon gender, as well as disease state

• Need to expand link matrix for test to include gender

• Need P(t|g, d) for all values of t, g, d

17-73: Multiple Parents (Polytrees)
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Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D,G) T = ~t T = t

0.9 0.1~d, m

~d, f 0.8 0.2

P(C|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

Gender

P(G) G = m G = f

0.50.5

0.1 0.9 d, m

 d, f 0.2 0.8

17-74: Calculating π() in Polytrees

• For each parent X, we have P(X|e+)

• P(D) = [0.999, 0.001], P(G) = [0.5, 0, 5]

• We need the probabilities for all combinations of parents

• P(¬d,m), P(¬d, f ), P(d,m), P(d, f )

• Parents are independent given upstream evidence

• P(¬d,m) = P(¬d)P(m)

17-75: Calculating π() in Polytrees

• We have [P(¬d), P(d)] and [P(m), P( f )]

• We need [P(¬d,m), P(¬d, f ), P(d,m), P(d, f )]

• P(¬d,m) = P(¬d)P(m), P(¬d, f ) = P(¬d)P( f ), etc.

• P(¬d,m) = 0.999 ∗ 0.5, P(¬d, f ) = 0.999 ∗ 0.5, P(d,m) = 0.001 ∗ 0.5, P(d, f ) = 0.001 ∗ 0.5

• P(D,G) = [0.4995, 0.4995, 0.0005.0.0005]

• π(T ) =

[

π(¬d,m) π(¬d, f ) π(d,m) π(d, f )
]































P(¬t|¬d,m) P(t|¬d,m)

P(¬t|¬d, f ) P(t|¬d, f )

P(¬t|d,m) P(t|d,m)

P(¬t|d, f ) P(t|d, f )































17-76: Calculating π(T )

[

π(¬d,m) π(¬d, f ) π(d,m) π(d, f )
]































P(¬t|¬d,m) P(t|¬d,m)

P(¬t|¬d, f ) P(t|¬d, f )

P(¬t|d,m) P(t|d,m)

P(¬t|d, f ) P(t|d, f )































=
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[

0.4995 0.4995 0.0005 0.0005
]































0.9 0.1

0.8 0.2

0.1 0.9

0.2 0.8































=

[

0.8493 0.1507
]

17-77: Calculating BEL(T )

• What is our belief that the test actually is positive, given that the courier delivers a positive message?

• π(T ) = [0.8493, 0.1507]

• λ(T ) =

[

0.95 0.05

0.1 0.9

] [

0

1

]

• λ(T ) = [0.05, 0.9]

• BEL(T ) = α[0.42465, 0.13565] (α = 1/0.5603)

• BEL(T ) = [0.757898, 0.242102]

17-78: Calculating π() in Polytrees

• To calculate π(X), when X has multiple parents m:

• For each parent Yk of X, calculate P(Yk|e
+

X
)

(Define message from Yk to X, πX(Yk) = (Yk |e
+

X
)

• If X is the only child of Yk, πx(Yk) = π(Yk)

• If Yk has children C1 . . .C j other than X, then πX(Yk) = π(Yk)
∏

i=i... j λCi
(Y)

• (That is, πX(Yk) = BEL(Y)/λX(Y))

• Combine the πX messages from all the parents, and multiply the result by the link matrix MX |Y1...Ym
to get

π(X)

17-79: Calculating λ() in Polytrees

Disease

Test

Courier

P(D) D = ~d D = d

0.0010.999

P(T|D,G) T = ~t T = t

0.9 0.1~d, m

~d, f 0.8 0.2

P(C|T) C = ~c C = c

0.95 0.05T = ~t

T =  t 0.1 0.9

Gender

P(G) G = m G = f

0.50.5

0.1 0.9 d, m

 d, f 0.2 0.8

17-80: Calculating λ() in Polytrees

• How do we send a λmessage up to Disease, given the combined link matrix for Disease and Gender?





























P(¬t|¬d,m) P(t|¬d,m)

P(¬t|¬d, f ) P(t|¬d, f )

P(¬t|d,m) P(t|d,m)

P(¬t|d, f ) P(t|d, f )




























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• If we knew that the gender was definitely male, then we could select the appropriate two rows, to create a 2x2

matrix:

[

P(¬t|¬d,m) P(t|¬d,m)

P(¬t|d,m) P(t|d,m)

]

17-81: Calculating λ() in Polytrees

• How do we send a λmessage up to Disease, given the combined link matrix for Disease and Gender?





























P(¬t|¬d,m) P(t|¬d,m)

P(¬t|¬d, f ) P(t|¬d, f )

P(¬t|d,m) P(t|d,m)

P(¬t|d, f ) P(t|d, f )





























• If we knew that the gender was definitely female, then we could select the appropriate two rows, to create a 2x2

matrix:

[

P(¬t|¬d, f ) P(t|¬d, f )

P(¬t|d, f ) P(t|d, f )

]

17-82: Calculating λ() in Polytrees

• If we knew the value of Gender, we could select the correct rows to build the appropriate link matrix to send the

lambda message.

• We don’t know for certain the value of Gender, but we do know the probability G, given evidence upstream of

T :

• P(G|e+
T

) = πT (G) = π(G) =
[

0.5 0.5
]

• We can then average the rows:
[

P(¬t|¬d,m) ∗ P(m) + P(¬t|¬d, f )P( f ) P(t|¬d,m)P(m) + P(t|¬d, f )P( f )

P(¬t|d,m) ∗ P(m) + P(¬t|d, f )P( f ) P(t|d,m)P(m) + P(t|d, f )P( f )

]

17-83: Calculating λ() in Polytrees

Original Link Matrix MT |D,C

P(T |D,C) T = ¬t T = t

¬d,m 0.9 0.1

¬d, f 0.8 0.2

d,m 0.1 0.9

d, f 0.2 0.8

Revised Link Matrix MT |D

P(T |D) T = ¬t T = t

¬d 0.85 0.15

d 0.15 0.85

17-84: Calculating BEL(D)

λ(D) =

[

0.85 0.15

0.15 0.85

] [

0.05

0.9

]

=

[

0.1775 0.7725
]

π(D) =

[

0.999 0.001
]

BEL(D) = απ(D)λ(D)

= α
[

0.177323 0.0007725
]

=

[

0.99566 0.00434
]

17-85: Complete Polytree Example
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Disease

Test

Courier2

P(D) D = ~d D = d

0.0010.999

P(T|D,G) T = ~t T = t

0.9 0.1~d, m

~d, f 0.8 0.2

P(C|T) C = ~c C = c

0.9 0.1T = ~t

T =  t 0.1 0.9

Gender

P(G) G = m G = f

0.50.5

0.1 0.9 d, m

 d, f 0.2 0.8

Name

P(N|G) sue chris

0.1 0.4G = m

T = f 0.5 0.4

john

0.5

0.1

Courier1

(Courier link matrices the same)

17-86: Complete Polytree Example

• Find BEL(D), given that:

• Both couriers return a positive result

• Patients name is John

17-87: Polytree Example: λs

Test

Courier2

P(C|T) C = ~c C = c

0.9 0.1T = ~t

T =  t 0.1 0.9

Courier1

• λ(C1) = λ(C2) = [0, 1]

• λC1
(T ) = [0.1, 0.9]

• λC2
(T ) = [0.1, 0.9]

• λ(T ) = [0.01, 0.81]

17-88: Polytree Example: λs

Gender

Name

P(N|G) sue chris

0.1 0.4G = m

T = f 0.5 0.4

john

0.5

0.1
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• λ(N) = [0, 0, 1]

• λ(G) = [0.5, 0.1]

17-89: Polytree Example: λs
Test

Gender

P(G) G = m G = f

0.50.5

Name

λ(G) = [0.5, 0.1] π   (G) = α[0.25, 0.05]
      = [0.8333, 0.1667] 
T

17-90: Polytree Example: λs

Disease

Test

P(T|D,G) T = ~t T = t

0.9 0.1~d, m

~d, f 0.8 0.2

Gender

0.1 0.9 d, m

 d, f 0.2 0.8

λ(T)=[0.01, 0.81]

π  (G)=[0.8333, 0.1667]
T

17-91: Polytree Example: λs

Disease

Test

Gender

λ(T)=[0.01, 0.81]

π  (G)=[0.8333, 0.1667]
T

P(T|D) T = ~t T = t

0.8833 0.1167~d

d 0.1167 0.8833

17-92: Polytree Example: λs

Disease

Test

Gender

λ(T)=[0.01, 0.81]

π  (G)=[0.8333, 0.1667]
T

P(T|D) T = ~t T = t

0.8833 0.1167~d

d 0.1167 0.8833

λ(D)=[0.1034, 0.7166]
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17-93: Polytree Example: λs

Disease

Test

Gender

λ(T)=[0.01, 0.81]

π  (G)=[0.8333, 0.1667]
T

P(T|D) T = ~t T = t

0.8833 0.1167~d

d 0.1167 0.8833

λ(D)=[0.1034, 0.7166]

BEL(D) = απ(D)λ(D)

BEL(D) = α[0.999, 0.001][0.1034, 0.7166]

BEL(D) = α[0.1033, 0.0007]

BEL(D) = α[0.9933, 0.0067]

17-94: Observing Non-Leaves

• What if we observe a variable that is not a leaf?

• For instance, we observe the actual test result

• Add a “phantom child”

• Set λ message from that child to [0, . . . , 0, 1, 0, . . . , 0], where the 1 occurs at the observed value

• This λ message will override all other evidence for the node

17-95: Bayesian Network Failures

• Unfortunately, message passing only works for polytrees – DAGs whose underlying undirected graph has no

cycles.

• There are systems that we would like to model (including many medical systems) whose Markovian DAG does

not form a polytree.

• Message passing system is not guaranteed to produce correct results in non-polytrees.

17-96: Non-Polytree DAGs

Metastatic Cancer

Increased total
serum calcium

Brain Tumor

Coma
Severe

Headaches

• We can still calculate P(Xi|PAi) . . .
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17-97: Non-Polytree DAGs

M

I B

C
H

[0.8, 0.2]

P(C|I,B) C = ~c c = c

0.95 0.05~i,~b

~i, b 0.2 0.8

0.2 0.8 i,~b

 i, b 0.2 0.8

P(B|M) b = ~b B = b

0.95 0.05M = ~m

M =  m 0.8 0.2

P(I|M) I = ~i I = i

0.8 0.2M = ~m

M =  m 0.2 0.8

P(H|B) H = ~h H = h

0.4 0.6B = ~b

B =  b 0.2 0.8

• This is still enough information to answer queries – we just can’t use the message passing scheme

• why?

17-98: Monte Carlo Method

• For each root variable, pick a value for the variable according to the prior.

• For example:

• X is a root variable

• π(X) = [0.3, 0.2, 0.5]

• ⇒ Pick the value x1 for X with probability 0.3, x2 with probability 0.2, and x3 with probability 0.5

17-99: Monte Carlo Method

• Once a value for all of the parents of a node Z have been chosen, pick a value for the node based on the value of

the parents, and P(Z|PAZ)

• For example:

• If Z has a single parent W

• W = [0, 1, 0],

• P(Z|W) =

P(Z|W) z1 z2 z3

w1 0.1 0.2 0.8

w2 0.3 0.4 0.3

w3 0.9 0.1 0

• ⇒ Pick z1 with probability 0.3, z2 with probability 0.4, and z3 with probability 0.3.

17-100: Monte Carlo Method

• Once values have been chosen for all variables in the network, we have a single trial

• Do repeated trials, collect frequency information, and use that information to determine the values of queries.

17-101: Monte Carlo Method
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• Once values have been chosen for all variables in the network, we have a single trial

• Do repeated trials, collect frequency information, and use that information to determine the values of queries.

• To determine P(x|y), count the number of trials in which X = x and Y = y,and the number of trials in which

Y = y, and divide to get an estimate on P(x|y)

17-102: Monte Carlo Method

• Disadvantages of the Monte Carlo Method:

17-103: Monte Carlo Method

• Disadvantages of the Monte Carlo Method:

• Not guaranteed to find an exact probability in finite time.

• Can require exponential time to get good results.

• Calculating P(x|y) when both x and y are unlikely can require a very large number of iterations to get good

data.

17-104: Monte Carlo Method

• Advantages of the Monte Carlo Method:

17-105: Monte Carlo Method

• Advantages of the Monte Carlo Method:

• Does not require exponential space

• Do not need to modify the network (no node collapsing)

• Easy to implement

• And easy to parallelize

• Can get approximate answers “quickly”, and can get better answers with more time

17-106: Other Techniques

• There are a plethora of other techniques for doing inference in non-polytrees

• Combining nodes to remove cycles

• Methods using undirected graphs

• Leave those methods unexplored

17-107: Applications of Bayesian Networks

• Diagnosis (widely used in Microsoft’s products)

• Medical diagnosis

• Spam filtering

• Expert systems applications (plant control, monitoring)

• Robotic control


