
CS662-2013S-02 Python 1

02-0: Python

• Name “python” comes from Monte Python’s Flying Circus

• Most python references use examples involving spam, parrots (deceased), silly walks, and the like

• Interpreted language

• Type in an expression, returns the value

• Use Python like a calculator

• Variables don’t need to be declared, type is inferred by assigning a value

02-1: Why Python is Cool

• Easy to use & read

• Strongly typed, with inferred types

• First order programming

• Everything is an object

• Functions as data

• Lots of powerful built-in libraries

• File processing (including URLs)

• regular expressions

• GUIs

02-2: Python as Calculator

• All the standard operators

• +, -, *, /, %, ** or pow for x
y

• Assigning a value to a variable declares it

• Type is inferred from value assigned

• Coercion, just like

• 3 + 4.0 / 2

• 3 / 2 = ?

02-3: Datatypes: Numbers

• Integers (longs in C) 1, -32, 5612

• Long integers (unlimited size) 333422395954556L

• floats (doubles in C) 1.23 3.1e+15

• Octal and Hexadecimal 0143, 0x3aff3

• Complex numbers (3.0 + 5j)

CS662-2013S-02 Python 2

02-4: Datatypes: Strings

• Denoted with ” or ”” (equivalent)

>>> "spam"

’spam’

>>> ’spam’

’spam’

• Can mix and match, helpful when want ’ or ” in a string:

>>> "The parrot was ’dead’"

"The parrot was ’dead’"

>>> ’The parrot was "dead"’

’The parrot was "dead"’

02-5: Datatypes: Strings

• Multi-line strings using ”””

>>> """This is a

multiline string"""

’This is a\nmultiline string’

• Handy for function comments (more on this in a bit)

02-6: Datatypes: Strings

• Access individual elements using subscripts:

>>> x = "Hello There"

>>> x[3]

’l’

(Note that ’l’ is not a character, it is a string of length 1 (no chars in python))

• Also use slices:

>>> x = "Hello There"

>>> x[3:5]

’llo’

02-7: Datatypes: Strings

• Negative indicies in slices count from the end of the string:

>>> x = "Hello There"

>>> x[0:-3]

’Hello The’

• Think of the indices as pointing between charaters:

CS662-2013S-02 Python 3

+---+---+---+---+---+

| S | p | a | m | ! |

+---+---+---+---+---+

0 1 2 3 4 5

-5 -4 -3 -2 -1

02-8: Datatypes: Strings

+---+---+---+---+---+

| S | p | a | m | ! |

+---+---+---+---+---+

0 1 2 3 4 5

-5 -4 -3 -2 -1

• What should this return?

>>> x = "Hello There"

>>> x[-1:-5]

02-9: Datatypes: Strings

• Can concatinate strings using “+” (just like java)

>>> x = "cat"

>>> y = "dog"

>>> x + y

’catdog’

• Repitition using *

>>> "cat" * 3

’catcatcat’

02-10: Datatypes: Strings

• Strings are immutable

>>> x = "cat"

>>> x[1] = "o"

ERROR

• How could we change the elemet at index 1 to an “o”?

02-11: Datatypes: Strings

• Strings are immutable

>>> x = "cat"

>>> x[1] = "o"

ERROR

• How could we change the elemet at index 1 to an “o”?

CS662-2013S-02 Python 4

>>> x = "cat"

>>> x = x[0:1] + ’o’ + x[2:3]

>>> x

’cot’

• Note that this is a bit wasteful, creates lots of strings (more on how to do string manipulation efficiently in a bit

...)

02-12: Datatypes: Lists

• Items between [and], separated by commas are lists

• Lists are heterogeneous

>>> [1, 2, 3, 4]

[1, 2, 3, 4]

>>> [3, "a", 4.5, 3+4j]

[3, ’a’, 4.5, (3+4j)]

02-13: Datatypes: Lists

• Access elements with [], but lists are mutable (unlike strings)

>>> x = [1, 2, 3, 4]

>>> x[2]

3

>>> x[2] = 99

>>> x

[1, 2, 99, 4]

02-14: Datatypes: Lists

• Python makes list processing very easy

>>> x = [1, 2, 3]

>>> x.append("car")

>>> x

[1, 2, 3, ’car’]

>>> x[2] = [1,2,3,4]

>>> x

[1, 2, [1, 2, 3, 4], ’car’]

02-15: Datatypes: Lists

• append(), pop() – stacks and queues

• +, *, append, extend, sort, reverse

• Use slices (just like strings)

>>> x = [1,2,3,4]

>>> x[1:2] = [5,6,7,8]

>>> x

[1, 5, 6, 7, 8, 3, 4]

CS662-2013S-02 Python 5

02-16: Datatypes: Lists

• List variables store reference:

>>> x = [1,2,3,4]

>>> y = x

>>> y[1] = 99

>>> x

[1, 99, 3, 4]

• Get a copy by using a slice

>>> x = [1,2,3,4]

>>> y = x[:]

>>> y[1] = 99

>>> x

[1, 99, 3, 4]

02-17: == vs. is

• Python does a good job of doing “what you want”

• “==” is value-equality, not reference equality

• “is” is reference equality

>>> x = [1,2,3,4]

>>> y = [1,2,3,4]

>>> z = x

>>> x == y

True

>>> x is y

False

>>> x is z

True

02-18: Tuples

• Immuable lists

• use () instead of []

• () empty tuple

• (3,2) tuple with two elements

• What about singletons?

• (3) is just 3 with parens

• (3,) is a singleton tuple

• Otherwise, just like lists

02-19: Tuples

CS662-2013S-02 Python 6

• Can use tuples for multiple assignment

• Handy for swapping (also for returning > 1 value)

>>> spam, chips = 3,4

>>> spam, chips = chips, spam

>>> spam

4

>>> chips

3

02-20: Datatypes: Dictionaries

• Like hash tables

• Denoted with { }

• Accessed like arrays

>>> x = { }

>>> x["cat"] = 3

>>> x["dog"] = "mouse"

>>> x[4] = ’pipsqueak’

02-21: Datatypes: Dictionaries

• Can create a dictionary on a single line:

>>> x = { "green" : "eggs", 3 : "blind mice"}

>>> x["green"]

’eggs’

>>> x["newentry"] = "new value"

02-22: Datatypes: Dictionaries

• Can have nested dictionaries

>>> x = { "red" : 3, "complex" : { "blue" : 4 } }

>>> x["red"]

3

>>> x["complex"]

{ "blue" : 4 }

>>> x["complex]["blue"]

4

02-23: Datatypes: Dictionaries

• “keys” method returns a list of keys in a dictionary

• Add elements to a dictionay by assignment

• Delete keys using del

CS662-2013S-02 Python 7

>>> x = { "red" : 3, "blue" : 4 }

>>> x["green"] = 5

>>> x

{ ’red’ : 3, ’blue’ : 4, ’green’ : 5 }

>>> del x[’blue’]

>>> x

{ ’red’ : 3, ’green’ : 5 }

02-24: Multiple Lines

• No separators (semicolons, etc)

• No begin/end, {, } to define blocks

• One statement per line, blocks defined by indentation

02-25: Control Structures: if

if <test>:

<statement>

<statement>

elif:

<statement>

<statement>

elif:

<statement>

<statement>

else:

<statement>

<statement>

02-26: Control Structures: while

while <test>:

<statement>

<statement>

<statement>

• break, continue

• just like java/C/C++

02-27: Booleans in Python

• False:

• False (built in, careful of case!)

• 0, 0.0 (be careful of rounding errors!)

• () (empty tuple)

• [] (empty list)

• {} (empty dictionary)

• ”” (empty string

CS662-2013S-02 Python 8

• True:

• Anything else

02-28: Booleans in Python

• a and b

• if a is true, return b, else return a

• a or b

• if a is true, return a, else return b

02-29: and-or trick

• Can get C-style (test ? x : y)

• test and x or y

• Examples ...

• When does this break?

02-30: and-or trick

• Fixing the and-or trick:

• (test and [x] or [y])[0]

• What does this do?

• Do we have the same problem?

02-31: Iterators

• for loop:

>>> lst = [1, 2, 3, 4]

>>> for x in lst:

print x,

1 2 3

• Trailing , supresses end-of-line

• For loop only iterates over a data structure

• Use “range([low],high,[skip])” to iterate over a range

02-32: Iterators

• Dictionaries:

>>> d = {’a’: 1, ’b’:2, ’c’: 3 }

>>> for key in d:

print key,

a b c

>>> for key, value in d.iteritems():

print key, value

a 1

b 2

c 3

CS662-2013S-02 Python 9

02-33: Membership

• test with in <data structure>

>>> x = [1, 2, 3, 4]

>>> 2 in x

True

>>> 5 in x

False

>>> y = {"car": 1, "dog" : 2}

>>> "car" in y

True

>>> 1 in y

False

02-34: Functions

def <name>(params):

<body>

• Params are all pass-by-value (like C/Java)

• Return statements work just like C/Java

• Can use tuples to return > 1 value from a function

02-35: Functions

def fib(n):

if n <= 2:

return 1

else:

return fib(n-1) + fib(n-2)

def fib2(n):

if n <= 2:

return (1,1)

else:

(prev, prevPrev) = fib2(n-1)

return prev+prevPrev, prev

02-36: Function comments

def <name>(params):

"""Comment that describes

the function """

<body>

• Comment is part of the function itself

• Can be accessed with help(functionname)

02-37: Function parameters

• Functions can have optional praramters

CS662-2013S-02 Python 10

• Can call functions using name of the parameter

• Can have variable numbers of parameters

• *args, **args

02-38: Modules

• Each .py file is a “module”

• Can load “module.py” with “import module”

• Module needs to be in a location described by PYTHONPATH enviornment variable

• PYHONPATH has same syntax as standard PATH

• Path stored in sys.path, can modify at runtime

• Need to use “module” when calling functions

• from <module> import <symbol>

• from <module> import *

02-39: Python scripts

• When you import a module, execute the entire file

• def’s generate functions

• have any code at all – executed when module is run

• .py files can be scripts (to be run from the commmand line), or modules (imported by other python programs).

We can have the same .py file serve 2 purposes

• The symbol __name__ will have the value __main__ if and only if file is being used as a script

if __name__ == "__main__":

<run main program of script>

02-40: File Handling

• outfile = file(’fname’, ’w’), infile = file(’fname’, ’r’)

• ’r’ is default, can be left out

• S = infile.read() – reads entire file into string S

• S = infile.read(n) – reads first n lines into S

• S = infile.readline() – reads one line into S

• L = infile.readlines() – reads while file into a list of strings

• Unless the file is really large, better to read all at once with read() or readlines(), and then process the

strings

02-41: URLs

CS662-2013S-02 Python 11

>>> Import urllib

>>> sock = urllib.urlopen("http://cs.usfca.edu/")

>>> htmlSource = sock.read()

>>> sock.close()

>>> print htmlSource

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head>

<title>Department of Computer Science</title>

<link rel="stylesheet" type="text/css" href="/cs.css">

<link rel="shortcut icon" type="image/ico" href="/favicon.ico">

</head>

... etc

02-42: Regular Expressions

• Dive into Python has a good explaination

• Dive in, and come to me with questions

• Spend lecture time on regular expressions if there is classwide confusion

