CS662-2013S-02 Python

02-0: Python

e Name “python” comes from Monte Python’s Flying Circus
e Most python references use examples involving spam, parrots (deceased), silly walks, and the like
o Interpreted language
o Type in an expression, returns the value
e Use Python like a calculator

e Variables don’t need to be declared, type is inferred by assigning a value

02-1: Why Python is Cool

e Easy to use & read
o Strongly typed, with inferred types
o First order programming

e Everything is an object

e Functions as data
e Lots of powerful built-in libraries

o File processing (including URLs)
e regular expressions
o GUIs

02-2: Python as Calculator

o All the standard operators
o +, -, %/, %, ** or pow for x’
e Assigning a value to a variable declares it
o Type is inferred from value assigned
e Coercion, just like
e 3+40/2
©3/2=7

02-3: Datatypes: Numbers

o Integers (longs in C) 1, -32, 5612
o Long integers (unlimited size) 333422395954556L

floats (doubles in C) 1.23 3.1e+15

Octal and Hexadecimal 0143, Ox3aff3

Complex numbers (3.0 + 5j)

CS662-2013S-02 Python

02-4: Datatypes: Strings

9999

e Denoted with ”” or ”” (equivalent)
>>> "spam"

’spam’

>>> ’spam’

’spam’

o Can mix and match, helpful when want’ or ” in a string:

>>> "The parrot was ’dead’"”
"The parrot was ’dead’"
>>> 'The parrot was "dead"’
’The parrot was "dead"’

02-5: Datatypes: Strings

999999

e Multi-line strings using

>>> """This is a
multiline string
’This is a\nmultiline string’

e Handy for function comments (more on this in a bit)
02-6: Datatypes: Strings
e Access individual elements using subscripts:
>>> x = "Hello There"
>>> x[3]
’ 1 ’
(Note that ’1’ is not a character, it is a string of length 1 (no chars in python))

e Also use slices:

>>> x = "Hello There"
>>> x[3:5]
110’

02-7: Datatypes: Strings

e Negative indicies in slices count from the end of the string:

>>> x = "Hello There"
>>> x[0:-3]
"Hello The’

o Think of the indices as pointing between charaters:

CS662-2013S-02 Python

-ttt

| Slplalm]!|
-ttt
® 1 2 3 4 5
-5 -4 -3 -2 -1

02-8: Datatypes: Strings
B e e
'SIplalmf!]
B e e
® 1 2 3 4 5
-5 -4 -3 -2 -1

e What should this return?

>>> x = "Hello There"
>>> x[-1:-5]

02-9: Datatypes: Strings

o Can concatinate strings using “+” (just like java)

>>> x = "cat"
>>> y = "dog"
>>> X + ¥
’catdog’

e Repitition using *
>>> "cat" * 3
"catcatcat’

02-10: Datatypes: Strings

o Strings are immutable

>>> X = '‘cat

>>> x[1] = "o
ERROR

e How could we change the elemet at index 1 to an “0”?
02-11: Datatypes: Strings

o Strings are immutable

>>> x = "cat"

>>> x[1] = "o
ERROR

e How could we change the elemet at index 1 to an “0”?

CS662-2013S-02 Python 4

>>> x = "cat"

>>> x = x[0:1] + ’o’ + x[2:3]
>>> X

‘cot’

e Note that this is a bit wasteful, creates lots of strings (more on how to do string manipulation efficiently in a bit

)
02-12: Datatypes: Lists
e Items between [and], separated by commas are lists

e Lists are heterogeneous

>>> [1, 2, 3, 4]

[1, 2, 3, 4]

>>> [3, "a", 4.5, 3+4j]
[3, ’a’, 4.5, (3+4j)]

02-13: Datatypes: Lists

o Access elements with [], but lists are mutable (unlike strings)

>>>x = [1, 2, 3, 4]

>>> x[2]

3

>>> x[2] = 99
>>> X

[1, 2, 99, 4]

02-14: Datatypes: Lists

o Python makes list processing very easy

>>> x = [1, 2, 3]

>>> x.append('car")

>>> X

[1, 2, 3, ’car’]

>>> x[2] = [1,2,3,4]

>>> X

(1, 2, [1, 2, 3, 4], ’car’]

02-15: Datatypes: Lists

e append(), pop() — stacks and queues
e +, * append, extend, sort, reverse

o Use slices (just like strings)

>>> x = [1,2,3,4]

>>> x[1:2] = [5,6,7,8]
>>> X

[1, 5, 6, 7, 8, 3, 4]

CS662-2013S-02 Python

02-16:

02-17:

02-18:

02-19:

Datatypes: Lists
List variables store reference:

>>> x = [1,2,3,4]

>>>y = X
>>> y[1] = 99
>>> X

[1, 99, 3, 4]

Get a copy by using a slice

>>> x = [1,2,3,4]
>>>y = x[:]
>>> y[1] = 99

>>> X
[11 991 31 4]
==vs. is

Python does a good job of doing “what you want”

3

‘==""1s value-equality, not reference equality

[T3PR1]

is” is reference equality

>>> x = [1,2,3,4]
>>y = [1,2,3,4]
>>> z = X

>>> X == y

True

>>> X is y

False

>>> X is z

True

Tuples

Immuable lists
use () instead of []

o () empty tuple

e (3,2) tuple with two elements
What about singletons?

e (3)is just 3 with parens

e (3,)is a singleton tuple
Otherwise, just like lists

Tuples

CS662-2013S-02 Python

o Can use tuples for multiple assignment

e Handy for swapping (also for returning > 1 value)

>>> spam, chips = 3,4

>>> spam, chips chips, spam
>>> spam

4

>>> chips

3

02-20: Datatypes: Dictionaries

e Like hash tables
e Denoted with { }

o Accessed like arrays

>>x = {1}

>>> x["cat"] = 3

>>> x["dog"] = "mouse"
>>> x[4] = ’pipsqueak’

02-21: Datatypes: Dictionaries

o Can create a dictionary on a single line:

>>> x = { "green" : "eggs", 3 : "blind mice"}
>>> x["green"]

"eggs’

>>> x["newentry"] = "new value"

02-22: Datatypes: Dictionaries
e Can have nested dictionaries

>>> x = { "red" : 3, "complex" : { "blue" : 4} }
>>> x["red"]

3

>>> x["complex"]

{ "blue" : 4 }

>>> x["complex] ["blue"]
4

02-23: Datatypes: Dictionaries

o “keys” method returns a list of keys in a dictionary
o Add elements to a dictionay by assignment

o Delete keys using del

CS662-2013S-02 Python

>>> x = { "red" : 3, "blue" : 4 }

>>> x["green"] = 5

>>> X

{ 'red’” : 3, ’blue’ : 4, ’'green’ : 5}
>>> del x[’blue’]

>>> X

{ 'red’” : 3, ’green’ : 5}

02-24: Multiple Lines

o No separators (semicolons, etc)
e No begin/end, {, } to define blocks

¢ One statement per line, blocks defined by indentation
02-25: Control Structures: if

if <test>:
<statement>
<statement>
elif:
<statement>
<statement>
elif:
<statement>
<statement>
else:
<statement>
<statement>

02-26: Control Structures: while

while <test>:
<statement>
<statement>
<statement>

e break, continue
o just like java/C/C++
02-27: Booleans in Python

e False:

e False (built in, careful of case!)

e 0, 0.0 (be careful of rounding errors!)
o () (empty tuple)

o [] (empty list)

e {} (empty dictionary)

9939

e 7’ (empty string

CS662-2013S-02 Python

e True:
e Anything else
02-28: Booleans in Python
e aandb
e if ais true, return b, else return a
e aorb
e if ais true, return a, else return b
02-29: and-or trick
o Can get C-style (test ? x : y)
e testand x ory
e Examples ...
e When does this break?
02-30: and-or trick
o Fixing the and-or trick:
e (test and [x] or [y]D[O]
e What does this do?
e Do we have the same problem?
02-31: Iterators

e for loop:

>>> 1st = [1, 2, 3, 4]

>>> for x in lst:
print x,

123

o Trailing , supresses end-of-line

o For loop only iterates over a data structure

e Use “range([low],high,[skip])” to iterate over a range
02-32: Iterators
e Dictionaries:

>>d={’a’:1, 'b’:2, 'c’: 3}
>>> for key in d:
print key,
abc
>>> for key, value in d.iteritems():
print key, value

Nn T o
w N =

CS662-2013S-02 Python

02-33: Membership
e test with in <data structure>

>>>x = [1, 2, 3, 4]

>>> 2 in X

True

>>> 5 in x

False

>>> y = {"car": 1, "dog" : 2}
>>> "car" in y

True

>>> 1 in y

False

02-34: Functions

def <name>(params):
<body>

e Params are all pass-by-value (like C/Java)
e Return statements work just like C/Java

o Can use tuples to return > 1 value from a function
02-35: Functions

def fib():
if n <= 2:
return 1
else:
return fib(n-1) + fib(n-2)

def fib2(n):
if n <= 2:
return (1,1)
else:
(prev, prevPrev) = fib2(n-1)
return prev+prevPrev, prev

02-36: Function comments

def <name>(params):
"""Comment that describes
the function """

<body>

o Comment is part of the function itself

o Can be accessed with help(functionname)

02-37: Function parameters

o Functions can have optional praramters

CS662-2013S-02 Python 10

02-38

02-39:

02-40:

02-41

Can call functions using name of the parameter
Can have variable numbers of parameters
o *args, **args

: Modules

Each .py file is a “module”

Can load “module.py” with “import module”

Module needs to be in a location described by PYTHONPATH enviornment variable
o PYHONPATH has same syntax as standard PATH

o Path stored in sys.path, can modify at runtime
Need to use “module” when calling functions

e from <module> import <symbol>

e from <module> import *
Python scripts

When you import a module, execute the entire file

o def’s generate functions

e have any code at all — executed when module is run

.py files can be scripts (to be run from the commmand line), or modules (imported by other python programs).
We can have the same .py file serve 2 purposes

e The symbol __name__ will have the value __main__ if and only if file is being used as a script

if __name__ == "__main__":
<run main program of script>

File Handling

outfile = file("fname’, w’), infile = file('fname’, ’r’)
e ’r’ is default, can be left out
S = infile.read() — reads entire file into string S
S = infile.read(n) — reads first n lines into S
S = infile.readline() — reads one line into S
L = infile.readlines() — reads while file into a list of strings

e Unless the file is really large, better to read all at once with read() or readlines(), and then process the
strings

: URLs

CS662-2013S-02 Python

>>> Import urllib
>>> sock = urllib.urlopen("http://cs.usfca.edu/")
>>> htmlSource = sock.read)
>>> sock.close()
>>> print htmlSource
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Department of Computer Science</title>
<link rel="stylesheet" type="text/css" href="/cs.css">
<link rel="shortcut icon" type="image/ico" href="/favicon.ico">
</head>
. etc

02-42: Regular Expressions

e Dive into Python has a good explaination
e Dive in, and come to me with questions

o Spend lecture time on regular expressions if there is classwide confusion

