Al Programming
CS662-2010F-G

Adversarial Search

David Galles

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

c-0. OQverview

® Example games (board splitting, chess, Othello)
® Min/Max trees

® Alpha-Beta Pruning

® Evaluation Functions

® Stopping the Search

® Playing with chance

c-1: TWO player games

® Board-Splitting Game
* Two players, V & H
e V splits the board vertically, selects one half
* H splits the board horizontally, selects one half

e V tries to maximize the final value, H tries to
minimize the final value

141 5 (11| 4
121131 9 | 7
15113110 | 8
16|16 |2

c-2 Two player games

® Board-Splitting Game
* \We assume that both players are rational
(make the best possible move)

* How can we determine who will win the game?

c-3: TWO player games

® Board-Splitting Game
* We assume that both players are rational
(make the best possible move)

* How can we determine who will win the game?
- Examine all possible games!

c-4: TWO player games

14| 5|11
Vertical ‘ 121319
15| 3 |10
16| 1| 6

N| o] N B

14| 5 11

19

12 (13

Horizontal —— [*5] 3

Horizontal ——

14| 5

Vertical Vertical Vertical Vertical

14 12 5 13 15 16 3 1 11 19 4 7 10 6 8 2

c-5: TWO player games

Max

Min Max

SRR TR

14 12 5 13 15 16 3 1 11 19 1

c-6: TWO player games

Max

Min Min @

e

14 12 5 13 15 16 3 1 11 19 1

c-7. TWO player games

® Game playing agent can do this to figure out which
move to make

 Examine all possible moves
 Examine all possible responses to each move
e ... all the way to the last move

e Caclulate the value of each move (assuming
opponent plays perfectly)

c-s: Two-Player Games

® |nitial state

® Successor Function
e Just like other Searches

® Terminal Test
* When is the game over?

® Utility Function
* Only applies to terminal states
e Chess: +1,0, -1
e Backgammon: 192 ...-192

c-o: Minimax Algorithm

Max (node)
if terminal (node)
return utility(node)
maxVal = MIN_VALUE
children = successors(node)
for child in children

maxVal = max(maxVal, Min(child))
return maxVal

Min(node)
if terminal (hode)
return utility(node)
minVal = MAX_VALUE
children = successors(node)
for child in children

minVal = min(minVal, Max(child))
return minVal

c-10. Minimax Algorithm

® Branching factor of b, game length of d moves,
what are the time and space requirements for
Minimax?

c-11: Minimax Algorithm

® Branching factor of b, game length of d moves,
what are the time and space requirements for
Minimax?
e Time: O(b")
e Space: O(d)
® Not managable for any real games — chess has an
average b of 35, can’t search the entire tree

® Need to make this more managable

c-12: > 2 Player Games

® \What if there are > 2 players?

® \\/e can use the same search tree:
e Alternate between several players
e Need a different evaluation function

c-13: > 2 Player Games

® Functions return a vector of utilities
* One value for each player
* Each player tries to maximize their utility
e May or may not be zero-sum

c-14: > 2 Player Games

c-15: NONn zero-sum games

® Even 2-player games don’t need to be zero-sum
e Utility function returns a vector
e Each player tries to maximize their utility

® |f there Is a state with maximal outcome for both
players, rational players will cooperate to find it

® Minimax Is rational, will find such a state

c-16: Alpha-Beta Pruning

® Does it matter what value is in the yellow circle?

Max 12

%??@ s vy 5 ?? 2

15 16 3 1 11 19

c-17: Alpha-Beta Pruning

® |f the yellow leaf has a value > 5, parent won't pick
it

® |f the yellow leaf has a value < 12, grandparent
won't pick it

® To affect the root, value must be < 5and > 12

Max 12

Max12
14 12 5 15 16 3 1 11 19 10 6

c-18: Alpha-Beta Pruning

® Value of nodes in neither yellow circle matter. Are
there more?

1 15

M@%w{?

11 19

c-19: Alpha-Beta Pruning

® Value of nodes in none of the yellow circles matter.

Max 12

Min Min 6

Max 1 2 Max 1 Max 1 1 Max 6

5
Min% Min Mi% Mi Mi m Min 4 i 6 Mi 2
14 12 5 15 16 11 4 7\X0 6 8 2

c-20. Alpha-Beta Pruning

A
A\

® |f mis better than n for Player, we will never reach n
* (player would pick minstead)

c-21: Alpha-Beta Pruning

® Maintain two bounds, lower bound «, and an upper
bound 3

* Bounds represent the values the node must
have to possibly affect the root

® As you search the tree, update the bounds
* Max nodes increase a, min nodes decrease 3

® |f the bounds ever cross, this branch cannot affect
the root, we can prune it.

c-22: Alpha-Beta Pruning

a = -inf, B = inf

Max

Min Min

S TR SR

14 12 5 13 15 16 3 1 11 19

c-23: Alpha-Beta Pruning

a = -inf, B = inf

Max

Min a = -inf, 3 = inf

Max o =-inf, p=inf Max

R WRE

14 12 5 13 15 16 3 1 11 19 1

o = -inf, B = inf

Min

a = -inf, B =in

c-24: Alpha-Beta Pruning

a = -inf, B = inf

Max

Min a = -inf, = inf

Max o = -inf, =inf Max

RN b;

14 12 5 13 15 16 3 1 11 19 1

a =-inf, =14

Min
o = -inf, 3 = 14

c-25: Alpha-Beta Pruning

D

Min

a = -inf, B = inf

Max

Min a = -inf, B = inf

120(12, 3 = inf Max

TR R

14 12 5 13 15 16 3 1 11 19 1

(0

12, 3 = inf

0

c-26: Alpha-Beta Pruning

a = -inf, B = inf

Max

Min a = -inf, f = inf

Max 2| o =12, = inf Max

R TRT R

14 12 5 15 16 3 1 11 19

Min

c-27: Alpha-Beta Pruning

a = -inf, B = inf

Max

a =-inf, =12

Max12

14 12 5 15 16 3 1 11 19

c-28: Alpha-Beta Pruning

o = -inf, § = inf

Max

a =-inf, =12

Max 12 o =-inf, =12 Max
Min Min Mi
14 12 5 15 16 3 1 11 194 7 10 6 8 2

a = -inf, = 12

c-29: Alpha-Beta Pruning

o = -inf, § = inf

Max

Maxlz a=-inf, =12 Max

Y RN

14 12 5 15 16 3 1 11 19 1

a = -inf, = 12

c-30: Alpha-Beta Pruning

a = -inf, B = inf

Max

a =-inf, =12

Min
a=15p=12 \Y ED:¢

Ep e TR

14 12 5 15 16 11 19

[

c-31: Alpha-Beta Pruning

o =12, B = inf

Max 12

Min Min

Ey e TR

14 12 5 15 16 11 19

c-32. Alpha-Beta Pruning

a =12, 3 =inf

Max

Min

14 12 5 15 16 11 19 4 7 10 6 8

c-33:. Alpha-Beta Pruning

o =12, B = inf

Max

Min]-% .

14 12 5 15 16 11 4 7 10 6 8 2

c-32: Alpha-Beta Pruning

o =12, B =inf

c-35: Alpha-Beta Pruning

o =12, B = inf

c-36: Alpha-Beta Pruning

o =12, B = inf

E RS

14 12 5 15 16

c-37: Alpha-Beta Pruning

® \We can cut large branches from the search tree

* |In the previous example, what would happen
with similar values and a deeper tree?

® |f we choose the order that we evaluate nodes
(more on this in a minute ...), we can dramatically
cut down on how much we need to search

c-3s: Evaluation Functions

® \We can'’t search all the way to the bottom of the
search tree

* Trees are just too big

® Search a few levels down, use an evaluation

function to see how good the board looks at the
moment

® Back up the result of the evaluation function, as if it
was the utility function for the end of the game

c-39: Evaluation Functions

® Chess:

 Material - value for each piece (pawn = 1,
bishop = 3, etc)
- Sum of my material - sum of your material
* Positional advantages
- King protected
- Pawn structure

® (Othello:

 Material — each piece has unit value

e Positional advantages
- Edges are good
- Corners are better
+ “near” edges are bad

c-40: Evaluation Functions

® |f we have an evaluation function that tells us how
good a move Is, why do we need to search at all?

e Could just use the evaluation function

® |f we are only using the evalution function, does
search do us any good?

c-41: Evaluation Functions & a-6

® How can we use the evaluation function to
maximize the pruning in alpha-beta pruning?

c-42. Evaluation Functions & a-6

® How can we use the evaluation function to
maximize the pruning in alpha-beta pruning?
e Order children of max nodes, from highest to
lowest

e Order children of min node, from lowest to
highest

e (Other than for ordering, eval function is not
used for interior nodes)

® \Vith perfect ordering, we need to search only b%?

(instead of b%) to find the optimal move — can
search up to twice as far

c-43. Stopping the Search

® \We can’t search all the way to the endgame
* Not enough time

® Search a set number of moves ahead
e Problems?

c-44: Stopping the Search

® \We can’t search all the way to the endgame
* Not enough time

® Search a set number of moves ahead
 What if we are in the middle of a piece trade?

* In general, what if our opponent is about to
capture one of our pieces

c-45. Stopping the Search

t__ LAl

CETETEE

“E N E
o

ol Eom D

M
S e
m-l N fa

u_i__! . . OHf (]

t__ LAl

-__.,él A =
wWe 3
el @

e

O s W S
od w0 |
M-l N &

u_i__! . . ol

c-46: Stopping the Search

® Quiescence Search

e Only apply the evaluation function to nodes that
do not swing wildly in value

* |f the next move makes a large change to the
evaluation function, look ahead a few more
moves

* Not increasing the search depth for the entire
tree, just around where the action Is

e To prevent the search from going too deep, may
restrict the kinds of moves (captures only, for
Instance)

c-47. Stopping the Search

® Horizon Problem

e Sometimes, we can push a bad move past the
horizon of our search

* Not preventing the bad move, just delaying it

* A position will look good, even though it is
utlimately bad

c-48: HOorizon Problem

c-49: Horizon Problem

® Singular Extensions

* When we are going to stop, see If there Is one
move that is clearly better than all of the others.

* |f so, do a quick “search”, looking only at the
best move for each player

e Stop when there Is no “clearly better” move

* Helps with the horizon problem, for a series of
forced moves

® Similar to quiescence search

c-50: Adding Chance

® \What about games that have an element of chance
(backgammon, poker, etc)

® \\Ve can add chance nodes to our search tree
* Consider “chance” to be another player

® How should we back up values from chance
nodes?

c-51: Adding Chance

c-52. Adding Chance

® For Max nodes, we backed up the largest value:

max Val(9s)
seSucessor s(n)

® For Min nodes, we backed up the smallest

max Val(9)
seSucessor s(n)

® For chance nodes, we back up the expected value
of the node

Z P(s)Val(s)

seSucessor s(n)

c-53: Adding Chance

® Adding chance dramatically increases the number
of nodes to search

e Braching factor b (ignoring die rolls)
* n different dice outcomes per turn
* Time to search to level m?

c-54: Adding Chance

® Adding chance dramatically increases the number
of nodes to search

e Braching factor b (ignoring die rolls)
* n different dice outcomes per turn
 Time to search to level m: b™n™

c-55: Adding Chance

® Because we are using expected value for chance
nodes, need to be more careful about choosing the
evaluation function

/ \ / \

G-56: SuMmary

® Min/Max trees

® Alpha-Beta Pruning
® Evaluation Functions
® Stopping the Search
® Playing with chance

	{small lecturenumber -	heblocknumber :} Overviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Two player gamesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Two player gamesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Two player gamesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Two player gamesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Two player gamesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Two player gamesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Two player gamesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Two-Player Gamesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Minimax Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Minimax Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Minimax Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} > 2 Player Gamesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} > 2 Player Gamesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} > 2 Player Gamesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Non zero-sum gamesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alpha-Beta Pruningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Evaluation Functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Evaluation Functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Evaluation Functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Evaluation Functions & $alpha $-$�eta $addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Evaluation Functions & $alpha $-$�eta $addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stopping the Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stopping the Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stopping the Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stopping the Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stopping the Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Horizon Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Horizon Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adding Chanceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adding Chanceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adding Chanceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adding Chanceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adding Chanceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adding Chanceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Summaryaddtocounter {blocknumber}{1}

