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c-0. OQverview

® Example games (board splitting, chess, Othello)
® Min/Max trees

® Alpha-Beta Pruning

® Evaluation Functions

® Stopping the Search

® Playing with chance



c-1: TWO player games

® Board-Splitting Game
* Two players, V & H
e V splits the board vertically, selects one half
* H splits the board horizontally, selects one half

e V tries to maximize the final value, H tries to
minimize the final value
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c-2 Two player games

® Board-Splitting Game
* \We assume that both players are rational
(make the best possible move)

* How can we determine who will win the game?



c-3: TWO player games

® Board-Splitting Game
* We assume that both players are rational
(make the best possible move)

* How can we determine who will win the game?
- Examine all possible games!



c-4: TWO player games
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c-5: TWO player games
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c-6: TWO player games
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c-7. TWO player games

® Game playing agent can do this to figure out which
move to make

 Examine all possible moves
 Examine all possible responses to each move
e ... all the way to the last move

e Caclulate the value of each move (assuming
opponent plays perfectly)



c-s: Two-Player Games

® |nitial state

® Successor Function
e Just like other Searches

® Terminal Test
* When is the game over?

® Utility Function
* Only applies to terminal states
e Chess: +1,0, -1
e Backgammon: 192 ...-192



c-o: Minimax Algorithm

Max (node)
if terminal (node)
return utility(node)
maxVal = MIN_VALUE
children = successors(node)
for child in children

maxVal = max(maxVal, Min(child))
return maxVal

Min(node)
if terminal (hode)
return utility(node)
minVal = MAX_VALUE
children = successors(node)
for child in children

minVal = min(minVal, Max(child))
return minVal



c-10. Minimax Algorithm

® Branching factor of b, game length of d moves,
what are the time and space requirements for
Minimax?



c-11: Minimax Algorithm

® Branching factor of b, game length of d moves,
what are the time and space requirements for
Minimax?
e Time: O(b")
e Space: O(d)
® Not managable for any real games — chess has an
average b of 35, can’t search the entire tree

® Need to make this more managable



c-12: > 2 Player Games

® \What if there are > 2 players?

® \\/e can use the same search tree:
e Alternate between several players
e Need a different evaluation function



c-13: > 2 Player Games

® Functions return a vector of utilities
* One value for each player
* Each player tries to maximize their utility
e May or may not be zero-sum



c-14: > 2 Player Games



c-15: NONn zero-sum games

® Even 2-player games don’t need to be zero-sum
e Utility function returns a vector
e Each player tries to maximize their utility

® |f there Is a state with maximal outcome for both
players, rational players will cooperate to find it

® Minimax Is rational, will find such a state



c-16: Alpha-Beta Pruning

® Does it matter what value is in the yellow circle?
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c-17: Alpha-Beta Pruning

® |f the yellow leaf has a value > 5, parent won't pick
it

® |f the yellow leaf has a value < 12, grandparent
won't pick it

® To affect the root, value must be < 5and > 12
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c-18: Alpha-Beta Pruning

® Value of nodes in neither yellow circle matter. Are
there more?
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c-19: Alpha-Beta Pruning

® Value of nodes in none of the yellow circles matter.
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c-20. Alpha-Beta Pruning

A
A\

® |f mis better than n for Player, we will never reach n
* (player would pick minstead)



c-21: Alpha-Beta Pruning

® Maintain two bounds, lower bound «, and an upper
bound 3

* Bounds represent the values the node must
have to possibly affect the root

® As you search the tree, update the bounds
* Max nodes increase a, min nodes decrease 3

® |f the bounds ever cross, this branch cannot affect
the root, we can prune it.



c-22: Alpha-Beta Pruning

a = -inf, B = inf
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c-23: Alpha-Beta Pruning

a = -inf, B = inf
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c-24: Alpha-Beta Pruning

a = -inf, B = inf
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c-25: Alpha-Beta Pruning
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c-26: Alpha-Beta Pruning

a = -inf, B = inf
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c-27: Alpha-Beta Pruning

a = -inf, B = inf

Max
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c-28: Alpha-Beta Pruning

o = -inf, § = inf
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c-29: Alpha-Beta Pruning

o = -inf, § = inf
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c-30: Alpha-Beta Pruning

a = -inf, B = inf
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c-31: Alpha-Beta Pruning

o =12, B = inf
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c-32. Alpha-Beta Pruning

a =12, 3 =inf
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c-33:. Alpha-Beta Pruning

o =12, B = inf
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c-32: Alpha-Beta Pruning

o =12, B =inf




c-35: Alpha-Beta Pruning

o =12, B = inf




c-36: Alpha-Beta Pruning
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c-37: Alpha-Beta Pruning

® \We can cut large branches from the search tree

* |In the previous example, what would happen
with similar values and a deeper tree?

® |f we choose the order that we evaluate nodes
(more on this in a minute ...), we can dramatically
cut down on how much we need to search



c-3s: Evaluation Functions

® \We can'’t search all the way to the bottom of the
search tree

* Trees are just too big

® Search a few levels down, use an evaluation

function to see how good the board looks at the
moment

® Back up the result of the evaluation function, as if it
was the utility function for the end of the game



c-39: Evaluation Functions

® Chess:

 Material - value for each piece (pawn = 1,
bishop = 3, etc)
- Sum of my material - sum of your material
* Positional advantages
- King protected
- Pawn structure

® (Othello:

 Material — each piece has unit value

e Positional advantages
- Edges are good
- Corners are better
+ “near” edges are bad



c-40: Evaluation Functions

® |f we have an evaluation function that tells us how
good a move Is, why do we need to search at all?

e Could just use the evaluation function

® |f we are only using the evalution function, does
search do us any good?



c-41: Evaluation Functions & a-6

® How can we use the evaluation function to
maximize the pruning in alpha-beta pruning?



c-42. Evaluation Functions & a-6

® How can we use the evaluation function to
maximize the pruning in alpha-beta pruning?
e Order children of max nodes, from highest to
lowest

e Order children of min node, from lowest to
highest

e (Other than for ordering, eval function is not
used for interior nodes)

® \Vith perfect ordering, we need to search only b%?

(instead of b%) to find the optimal move — can
search up to twice as far



c-43. Stopping the Search

® \We can’t search all the way to the endgame
* Not enough time

® Search a set number of moves ahead
e Problems?



c-44: Stopping the Search

® \We can’t search all the way to the endgame
* Not enough time

® Search a set number of moves ahead
 What if we are in the middle of a piece trade?

* In general, what if our opponent is about to
capture one of our pieces



c-45. Stopping the Search
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c-46: Stopping the Search

® Quiescence Search

e Only apply the evaluation function to nodes that
do not swing wildly in value

* |f the next move makes a large change to the
evaluation function, look ahead a few more
moves

* Not increasing the search depth for the entire
tree, just around where the action Is

e To prevent the search from going too deep, may
restrict the kinds of moves (captures only, for
Instance)



c-47. Stopping the Search

® Horizon Problem

e Sometimes, we can push a bad move past the
horizon of our search

* Not preventing the bad move, just delaying it

* A position will look good, even though it is
utlimately bad



c-48: HOorizon Problem




c-49: Horizon Problem

® Singular Extensions

* When we are going to stop, see If there Is one
move that is clearly better than all of the others.

* |f so, do a quick “search”, looking only at the
best move for each player

e Stop when there Is no “clearly better” move

* Helps with the horizon problem, for a series of
forced moves

® Similar to quiescence search



c-50: Adding Chance

® \What about games that have an element of chance
(backgammon, poker, etc)

® \\Ve can add chance nodes to our search tree
* Consider “chance” to be another player

® How should we back up values from chance
nodes?



c-51: Adding Chance



c-52. Adding Chance

® For Max nodes, we backed up the largest value:

max Val(9s)
seSucessor s(n)

® For Min nodes, we backed up the smallest

max Val(9)
seSucessor s(n)

® For chance nodes, we back up the expected value
of the node

Z P(s)Val(s)

seSucessor s(n)



c-53: Adding Chance

® Adding chance dramatically increases the number
of nodes to search

e Braching factor b (ignoring die rolls)
* n different dice outcomes per turn
* Time to search to level m?



c-54: Adding Chance

® Adding chance dramatically increases the number
of nodes to search

e Braching factor b (ignoring die rolls)
* n different dice outcomes per turn
 Time to search to level m: b™n™



c-55: Adding Chance

® Because we are using expected value for chance
nodes, need to be more careful about choosing the
evaluation function

/ \ / \



G-56: SuMmary

® Min/Max trees

® Alpha-Beta Pruning
® Evaluation Functions
® Stopping the Search
® Playing with chance
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