
CS662-2010F-G Adversarial Search 1

G-0: Overview

• Example games (board splitting, chess, Othello)

• Min/Max trees

• Alpha-Beta Pruning

• Evaluation Functions

• Stopping the Search

• Playing with chance

G-1: Two player games

• Board-Splitting Game

• Two players, V & H

• V splits the board vertically, selects one half

• H splits the board horizontally, selects one half

• V tries to maximize the final value, H tries to minimize the final value

14 5 11 4

12 13 9 7

15 13 10 8

16 1 6 2

G-2: Two player games

• Board-Splitting Game

• We assume that both players are rational (make the best possible move)

• How can we determine who will win the game?

G-3: Two player games

• Board-Splitting Game

• We assume that both players are rational (make the best possible move)

• How can we determine who will win the game?

• Examine all possible games!

G-4: Two player games



CS662-2010F-G Adversarial Search 2

14 5 11 412 13 19 715 3 10 816 1 6 2

Vertical

Horizontal Horizontal

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

14 5 11 4

12 13 19 7

15 3 10 8

16 1 6 2

Vertical Vertical Vertical Vertical

G-5: Two player games

14 5 11 412 13 19 715 3 10 816 1 6 2

Min Min Min Min Min Min Min Min

Max Max Max Max

MaxMin

Max

G-6: Two player games

14 5 11 412 13 19 715 3 10 816 1 6 2

Min Min Min Min Min Min Min Min

Max Max Max Max

MinMin

Max

12 5 15 1 11 4 6 2

12 15 11 6

612

12

G-7: Two player games

• Game playing agent can do this to figure out which move to make

• Examine all possible moves

• Examine all possible responses to each move

• ... all the way to the last move

• Caclulate the value of each move (assuming opponent plays perfectly)

•

G-8: Two-Player Games



CS662-2010F-G Adversarial Search 3

• Initial state

• Successor Function

• Just like other Searches

• Terminal Test

• When is the game over?

• Utility Function

• Only applies to terminal states

• Chess: +1, 0, -1

• Backgammon: 192 . . . -192

G-9: Minimax Algorithm

Max(node)

if terminal(node)

return utility(node)

maxVal = MIN_VALUE

children = successors(node)

for child in children

maxVal = max(maxVal, Min(child))

return maxVal

Min(node)

if terminal(node)

return utility(node)

minVal = MAX_VALUE

children = successors(node)

for child in children

minVal = min(minVal, Max(child))

return minVal

G-10: Minimax Algorithm

• Branching factor of b, game length of d moves, what are the time and space requirements for Minimax?

G-11: Minimax Algorithm

• Branching factor of b, game length of d moves, what are the time and space requirements for Minimax?

• Time: O(bd)

• Space: O(d)

• Not managable for any real games – chess has an average b of 35, can’t search the entire tree

• Need to make this more managable

G-12: > 2 Player Games

• What if there are > 2 players?

• We can use the same search tree:

• Alternate between several players

• Need a different evaluation function

G-13: > 2 Player Games

• Functions return a vector of utilities

• One value for each player


