
AI Programming
CS662-2013S-08

Local Search / Genetic Algorithms

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

08-0: Overview

Local Search

Hill-Climbing Search

Simulated Annealing

Genetic Algorithms

08-1: Local Search

So far, stored the entire path from initial to goal
state

Path is essential – the path is the solution

Route finding

8-puzzle

(to a lesser extent) adversarial search

We know what the goal state is, but not how to
reach it

08-2: Local Search

For some problems, we don’t care what the
sequence of actions are – the final state is what we
need

Constraint Satisfaction Problems & Optimization
Problems

Finding the optimial (or satisfactory) solution is
what is important

8-Queens, Map Coloring, Scheduling, VLSI
layout, Cryptography

The solution is an assignment of values to
variables that maximizes some objective function

We don’t care how we get to the solution, we just
need the values of the variables

08-3: Local Search

Search algorithm that only uses the current state
(no path information) is a local search algorithm

Advantages

Constant memory requirements

Can search huge problem spaces

Disadvantages

Hard to guarantee optimality, might find only a
local optimum

May revisit states or oscillate (no memory)

08-4: Search Landscape

Local search can be useful for optimization
algoritms

“Find parameters such that o(x) is
maximized/minimized”

Search problem: state space is the combination of
value assignments to parameters

If there are n parameters, we can imagine an n + 1

dimensional space, where the first n dimensions
are the parameters of the function, and the n + 1th
dimension is the objective function

Search Landscape

Optima are hills

Valleys are poor solutions

(reverse to minimize o(x))

08-5: Search Landscape

x

f(x)

Maximize function f (x)

08-6: Search Landscape

08-7: Search Landscape

Lanscapes are a useful metaphor for local search
algorithms

Visualize climbing a hill, or descending a valley

Gives us a way of differentiating easy problems
from hard problems

Easy: Few peaks, smooth surfaces, no
ridges/plateaus

Hard: Many peaks, jagged or discontinuous
surfaces. plateaus

08-8: Hill Climbing Search

Simpliest local search: Hill Climbing

At any point, look at all your successors
(neighbors), move in the direction of greatest
positive change

Similar to Greedy Search

Requires very little memory

Stuck in local optimal

Plateaus can cause aimless wandering

08-9: Hill Climbing Search

Example: n-Queens

Each position in the search space is defined by a
n-unit vector

V[i] = column of row in position i

(examples on board)

Function is the number of conflicts

Trying to minimize function

08-10: Hill Climbing Search

Find roots of an equation: f (x) = 0,
f differentiable

Guess and x1, find f (x1), f ′(x1)

Use tangent line to f (x1) (slope = f ′(x1)) to pick x2

Repeat: xn+1 = xn −
f (xn)

f ′(xn)

Hill climbing search

Works great on smooth functions

08-11: Hill Climbing Search

Advantages to Hill Climbing

Simple to code

Requires little memory

May not need to do anything more complicated

Making Hill Climbing better:

Stochastic hill-climbing – pick randomly from
uphill moves

Weight probability by degree of slope

08-12: Improving Hill Climbing

Random-Restart Hill-Climbing

Run Hill Climbing until an optimum is reached

Randomly choose a new initial state

Run again

After n iterations, keep best solution

If we have a guess as to the number of optima
in the seach space, we can choose n

08-13: Simulated Annealing

Hill Climbing’s weakness: Never moves downhill

Can get stuck in local optimum

Simulated annealing tries to fix this

“Bad” (downhill) actions are occasionally
chosen to move out of a local optimum

08-14: Simulated Annealing

Pick a random
starting point

08-15: Simulated Annealing

Find a local
maximum

08-16: Simulated Annealing

Take some
backwards steps

08-17: Simulated Annealing

Eventually find
global maximum

08-18: Simulated Annealing

Based on analogies to crystal formation

When a metal cools, lattices form as molecules fit
into place

By reheating and recooling, a harder metal is
formed

Small undoing leads to a better solution

Minimize the “energy” in the system

Similarly, small steps away from the solution can
help hill-climbing escape local optima

08-19: Simulated Annealing

T = initial

s = initial-state

while (s != goal)

ch = successor-fn(s)

c = select-random-child(ch)

if c is better than s

s = c

else

s = c with probability p(T,c,s)

update T

What is T? P?

08-20: Simulated Annealing

Make “mistakes” (downhill steps) more frequently
early in the search, and more rarely later in the
search

T is the “Temperature”

High temperature: Make lots of “mistakes”

Low temperature: Make fewer mistakes

P is the probability function, when to make a
mistake

How should T change over time, what should P

be?

08-21: Cooling Schedule

Function for changing T is called a cooling
schedule

Most commonly used schedules:

Linear: Tnew = Told − dt

Proportional: Tnew = c ∗ Told, c < 1

08-22: Boltzmann Distribution

Probability of accepting a mistake P is governed by
a Boltzmann distribution

s is the current state, c is the child being
considered, and o is the function to optimize

P(c) = exp(
−|o(c)−o(s)|

T
)

Boundary conditions:

|o(c) − o(s)| = 0, then P(c) = 1

T very high, all fractions near 0, P(c) near 1

T low, P(c) depends on |o(c) − o(s)|

Gives us a way of weighing the probability of
accepting a “mistake” by its quality

08-23: Boltzmann Distribution

Simulated Annealing is (theoretically) complete
and optimal as long as T is lowered “slowly
enough”

“Slowly enough” might take more time than
exhaustive search

Still can be useful for finding a “pretty good”
solution

Can be very effective in domains with many optima

Simple addition to a hill-climbing algorithm

Weakness: selecting a good cooling schedule –
very hard!

No problem knowledge used in search (outside of
picking cooling schedule)

08-24: Genetic Algorithms

Genetic Algorithms: “Parallel hill-climbing search”

Basic Idea:

Select some solutions at random

Combine the best parts of the solutions to
make new solutions

Repeat

Successors are functions of two states, rather than
one

08-25: GA Terminology

Chromosome: A solution or state

Trait / gene: A parameter or state variable

Fitness: The “goodness” of a solution

Population: A set of chromosomes or solutions

08-26: Basic GA

pop = makeRandomPopulation

while (not done)

foreach p in pop

p.fitness = evaluate(p)

for i to size(pop) by 2:

parent1, parent2 = select random solutions from pop

(using fitness)

child1, child2 = crossover(parent1, parent2)

mutate child1, child2

replace old population with new population

08-27: Analogies to Biology

This is not how biological evolution works

Biological evolution is much more complex

Biology is a nice metaphor

... but Genetic Algorithms must stand or fail on
their own merits

08-28: Encoding a Problem

Choosing an encoding can be tricky

Traditionally, GA problems are encoded as
bitstrings

Example: 8 queens. For each column, we use 3
bits to encode the row of the queen = 24 bits

100 101 110 000 101 001 010 110 = 4 5 6 0 5 1 2 6

We begin by generating random bitstrings, then
evaluating them according to a fitness function (the
function to optimize)

8 Queens: number of nonattacking pairs of
queens (max = 28)

08-29: Generating New Solutions

Successor function: Work on two solutions

Called Crossover

Pick two solutions p1 and p2 to be parents

Go into how to pick parent solutions in a bit

Pick a random location on the bitstring (locus)

Merge the first part of p1 with the second part of p2

(and vice versa) to produce two new bitstrings

08-30: Crossover Example

s1: 100 101 110 000 101 001 010 110 = 4560512

s2: 011 000 101 110 111 010 110 111 = 1056726

Pick locus = 9

s1: (100 101 110) (000 101 001 010 110)

s2: (011 000 101) (110 111 010 110 111)

Crossover:

s3: (100 101 110) (110 111 010 110 111) =
4566726

s4: (011 000 101) (000 101 001 010 110) =
1050512

08-31: Mutation

Next, apply mutation

With probability m (where m is small), randomly flip
one bit in the solution

After generating a new population of the same size
as the old poplation, throw out the old population
and start again

08-32: What is going on?

Why does this work?

Crossover: recombine pieces of partially
successful solutions

Genes closer to each other are more likely to
stay together in successive generations

Encoding is important!

Mutation: Inject new solutions into the
population

If a trait was missing from initial population,
crossover cannot generate it without
mutation

08-33: Selection

How do we select parents for reproduction?

08-34: Selection

How do we select parents for reproduction?

Use the best n percent?

Want to avoid premature convergence

No genetic variation

Poor solutions can have promising subparts

Random?

No selection pressure

08-35: Roulette Selection

Roulette Selection weights the probability of a
chromosome being selected by its relative fitness

P(c) =
f itness(c)

∑
crh∈pop f itness(chr)

Normalizes fitness; total relative fitness will sum to
1

Can use these as probabilities

08-36: Example

Maximize f (x) = x2 over range [0, 31]

Assume integer values of x

Five bits to encode solution

Generate random initial population

String Fitness Relative Fitness

01101 169 0.144

11000 576 0.492

01000 64 0.055

10011 361 0.309

Total 1170 1.0

08-37: Example

Select parents with roulette selection

Choose a locus, and crossover the strings

String Fitness Relative Fitness

0110 | 1 169 0.144

1100 | 0 576 0.492

01000 64 0.055

10011 361 0.309

Total 1170 1.0

Children: 01100, 1101

08-38: Example

Select parents with roulette selection

Choose a locus, and crossover the strings

String Fitness Relative Fitness

01101 169 0.144

11 | 000 576 0.492

01000 64 0.055

10 | 011 361 0.309

Total 1170 1.0

Children: 01100, 11011 Children: 01011, 10000

08-39: Example

Replace old population with new population

Apply mutation to new population

With a small population and low mutation rate,
mutations are unlikely

New Generation:

01100, 11001, 11011, 10000

Average fitness has increased (293 to 439)

Maximum fitness has increased (576 to 729)

08-40: What’s really going on?

Subsolutions 11*** anbd ****1 are recombined to
produce a beter solution

Correlation between strings and fitness

Having a 1 in the first position is correlated with
fitness

Unsurprising, considering encoding

Call a 1 in the first position a building block

GA’s work by recombining smaller building blocks
into larger building blocks

08-41: Schemas (Schemata)

Way to talk about strings that are similar to each
other

Add ’*’ (don’t care) symbol to {0, 1}

A schema is a template that describes a set of
strings using {0, 1, *}

111** matches 11100, 11101, 11110, 11111

0*11* matches 00110, 00111, 01110, 01111

0***1 matches 00001, 00011, 00101, 00111,
01001, 01011, 01101, 01111

Premise: Schemas are correlated with fitness

In many encodings, only some bits matter for a
solution. Schemas give us a way of describing all
important information in a string

08-42: Schemas (Schemata)

GAs process schemas, rather than strings

Crossover may or may not damage a schema

11* vs 0*1

Short, highly fit low-order schema are more likely
to survive

Order: the number of fixed bits in a schema
1**** - order 1
0*1*1* - order 3

Building Block Hypothesis: GAs work by combining
low-order schemas into higher-order schemas to
produce progressively more fit solutions

08-43: Schema Theorem

‘Short, low-order, above-average fitness schemata re-

ceive exponentially increasing trials in subsequent gen-

erations.”

08-44: Theory vs. Implementation

Schema Theorem shows us why GAs work

In practice, implementation details can make a big
difference in the effectiveness of a GA

Encoding Choices

Algorithmic improvements

08-45: Tournament Selection

Roulette selection is nice, but computationally
expensive

Every individual must be evaluated

Two iterations through the entire population

Tournament selection is a much less expensive
selection mechanism

For each parent, choose two individuals at random

Higher fitness gets to reproduce

08-46: Elitism

Discarding all solutions from a previous generation
can slow down a GA

Bad draw can destroy progress

May want monotonic improvement

Elitism is the practice of keeping a fraction of the
population to carry over without crossover

Varying the fraction lets you tradde current
performance for learning rate

08-47: When to Stop

Stop whenever the GA finds a “Good Enough”
solution

What if we don’t know what “Good Enough” is?

When have we found the best solution to TSP?

Stop when the population has converged

Without mutation, eventually one solution will
dominate the population

After “enough” iterations without improvement

08-48: Encoding

Hardes part of GAs is determining how to encode
problem instances

Schema threorem tells us short = good

Parameters that are interrelated should be
located near each other

n Queens: Assume that each queen will go in one
column

Problem: Find the right row for each queen

n rows requires log2 n bits

Length of string n log2 n

08-49: Encoding Continuous Values

How could we optimize a real-valued function?

f (x) = x2
, x ∈ Reals[0, 31]

Break input space into m chunks

Each chunk is coded with a binary number

Called discretization

08-50: Permutation Operators

Some problems can’t be represented easily as a
bitstring

Traveling Salesman

Encoding as a bitstring will cause problems

Crossover will produce invalid solutions

Encode this as a list of cities: [3, 1, 2, 4, 5]

Fitness: MAXTOUR - tour length (so we can have
a maximization problem, rather than a minimization
problem

08-51: Partially Matched Crossover

How to do crossover?

Exchange positions rather than substrings

Example:

t1: 3 5 4 6 1 2 8 7

t2: 1 3 6 5 8 7 2 4

First, pick two loci at rancom

08-52: Partially Matched Crossover

t1: 3 5 | 4 6 1 2 | 8 7

t2: 1 3 | 6 5 8 7 | 2 4

Use pairwise matching to exchenge corresponding
cities on each tour

In each string, 4 and 6 trade places, as do 6
and 5, 1 and 8, and 2 and 7

New children
c1: 3 6 5 4 8 7 1 2
c2: 8 3 4 6 1 2 7 5

Intuition: Building blocks that are sections of a tour
should tend to remain together

08-53: Partially Matched Crossover

Partially Matched Crossover is one of many
approaches to using GAs to solve permutation
problems

Could also encode the position of each city

Can replace subtours

08-54: Summary

Local search

Looking for a state, not a path

Just store the current state

Easy to code, low memory – problems?

Simulated Annealing

Finding appropriate cooling schedule difficult

Theoretically complete, in practice useful when
lots of acceptable solutions

08-55: Summary

Genetic Algorithms

Use bitstrings to perform local searches
through a space of possible schemas

Lots of parameters to play with in practice

Representation is hardest part of problem

Effective at searching vast spaces

Sensitive to parameters
Mutation Rate
Elitism Rate
Initial Population

	{small lecturenumber -	heblocknumber :} Overviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Local Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Local Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Local Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Search Landscapeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Search Landscapeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Search Landscapeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Search Landscapeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hill Climbing Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hill Climbing Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hill Climbing Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hill Climbing Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Improving Hill Climbingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Simulated Annealingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Simulated Annealingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Simulated Annealingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Simulated Annealingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Simulated Annealingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Simulated Annealingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Simulated Annealingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Simulated Annealingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cooling Scheduleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Boltzmann Distributionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Boltzmann Distributionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Genetic Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} GA Terminologyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Basic GAaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Analogies to Biologyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Encoding a Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Generating New Solutionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Crossover Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Mutationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} What is going on?addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selectionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selectionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Roulette Selectionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} What's really going on?addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Schemas (Schemata)addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Schemas (Schemata)addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Schema Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Theory vs. Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Tournament Selectionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Elitismaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} When to Stopaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Encodingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Encoding Continuous Valuesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Permutation Operatorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Partially Matched Crossoveraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Partially Matched Crossoveraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Partially Matched Crossoveraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Summaryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Summaryaddtocounter {blocknumber}{1}

