
Department of Computer Science University of San Francisco

Computer Science 673
Fall 2016

Homework 3: Sorting
Due Friday, September 16th

All problem / exercise numbers are from the 3rd edition of Introduction to Algorithms
(the 1st and 2nd editions are different!) Note the difference between problems and exercises!

1. Exercise 5.3-2 (4 points)

Professor Kelp decides to write a procedure that will produce at random any permu-
tation besides the identity permutation. He proposes the following procedure:

PERMUTE–WITHOUT–IDENTITY(A)
1. n ← length(A)
2. for i ← 1 to n do
3. swap A[i] ↔ A[RANDOM(i+1,n)]

Prof Kelp wants every permuation except the identity permutation to have the same
probability, while he wants identity permutation (that is, no changes to the original
array) to have the probability 0. Does this code do what professor Kelp intends?

2. Consider the original HIRE-ASSISTANT problem, where we interview canditates one
at a time, and always hire the next person if he/she is better than who we currently
have:

HIRE-ASSISTANT(n)
Hire Candidate[1]
Best ← 1
for i ← 2 to n do

if Candidate[i] is better than Candidate[Best]
Best ← i
Hire Candidate[i]

(a) (1 points) What is the probability that you will hire exactly once (as a function
of n). Explain you answer!

(b) (1 points) What is the probability that you will hire exactly n times (as a function
of n)? Explain your answer!

(c) (4 points) What is the probabilty that you will hire exactly twice (as a function
of n)? Explain your answer! This one is much harder than the first 2 – be sure
you don’t miss any cases!

1



3. (4 points) In Randomized-Quicksort of a list of length n, what is the largest number
of times that RANDOM will be called? What is the smallest possible number of times
that RANDOM will be called? Be as exact as possible.

4. Problem 7-4 Stack Depth for Quicksort

Tail-Recursive-Quicksort(A, p, r)
while p < r
do

q ← Partition(A, p, r)
Tail-Recursive-Quicksort(A, p, q − 1)
p← q + 1

(a) (3 points) Argue that Tail-Recursive-Quicksort(A, 1, A.length) correctly sorts the
array A.

(b) (3 points) Describe a scenario in which the stack depth of Tail-Recursive-Quicksort
is Θ(n) on an n-element input array.

(c) (3 points) Modify the code for Tail-Recursive-Quicksort so that the worst-case
stack depth is Θ(lg n). Maintain the O(n lg n) expected running time of the
algorithm.

5. Exercise 8.3-2 (6 points)

A sorting algorithm is stable if it preserves the order of duplicate elements. (Consider
the case where we are sorting an arrray records based on a key field. Two different
records could have the same key. If the sort is stable, then for any two records x and
y with the same key field, x would appear before y in the sorted list if and only if x
appeared before y in the original list.

(a) (2 points) Which of the following sorting algorithms are stable: insertion, merge,
heap, quick.

(b) (4 points) Give a simple scheme that makes any sorting algorithm stable. How
much additional time and space does your sorting algorithm require?

2


