
CS673-2016F-01 Algorithm Analysis 1

01-0: Syllabus

• Office Hours

• Course Text

• Prerequisites

• Test Dates & Testing Policies

• Try to combine tests

• Grading Policies

01-1: How to Succeed

• Come to class. Pay attention. Ask questions.

• A question as vague as “I don’t get it” is perfectly acceptable.

• If you’re confused, at least 4 other people are, too.

• Come by my office

• I am very available to students.

• Start the homework assignments early

• Read the textbook. It’s one of the best textbooks around.

• Ask questions if you don’t understand the textbook!

01-2: How to Succeed

• Start Early (clarification)

Some of the homework assignments for this class will be very difficult. I will not expect you to be able to just

sit down and complete them.

• Start working on a problem right when it is given. Work on it until you get stuck.

• Come by my office, and talk about the problem with me. I will not give you the solution, but I will give

you a little push in the right direction

• Work on the problem some more, get stuck again.

• Come by my office again, get another push.

• Repeat, as necessary

01-3: What is an Algorithm?

• An algorithm is a step-by-step method for solving a problem.

• Each step must be well defined.

• Algorithm 6= Computer Program.

• A program is an implementation of an algorithm.

• Can have different implementations of the same algorithm

• Different Languages

CS673-2016F-01 Algorithm Analysis 2

• Different Coding Styles

01-4: Comparing Algorithms

• What makes one algorithm better than another?

01-5: Comparing Algorithms

• What makes one algorithm better than another?

• Space

• How much memory is used

• Time

• How long the algorithm takes to run

• Often see a time/space tradeoff – we can make an algorithm run faster by giving it more space, and vice/versa

01-6: Example: Insertion Sort
Time / # of times executed

Operation

i = 2 C1 1

while (i <= N) do C2 N

tmp = A[i] C3 (N-1)

j = i C4 (N-1)

while (j > 1) && (tmp < A[j-1]) do C5
∑N−1

j=1
Itrj + 1

A[j] = A[j-1] C6
∑N−1

j=1
Itrj

j-- C7
∑N−1

j=1
Itrj

A[j] = tmp C8 (N-1)

i++ C9 (N-1)

01-7: Example: Insertion Sort

Adding everything up:

C1 + C2N + (C3 + C4 + C8 + C9)(N − 1) + C5

N−1∑

j=1

(Itrj + 1) + (C7 + C8)

N−1∑

j=1

Itrj

(

N−1∑

j=1

Itrj)(C5 + C7 + C8) + N(C2 + C3 + C4 + C5 + C8 + C9) + C1 − (C3 + C4 + C8 + C9)

N−1
∑

j=1

Itrj ∗ C10 +N ∗ C11 + C12

01-8: Example: Insertion Sort

N−1
∑

j=1

Itrj ∗ C10 +N ∗ C11 + C12

• Don’t know Itr1, Itr2, . . .

• What can we do?

01-9: Example: Insertion Sort

N−1
∑

j=1

Itrj ∗ C10 +N ∗ C11 + C12

• Don’t know Itr1, Itr2, . . .

• What can we do?

• Worst case

CS673-2016F-01 Algorithm Analysis 3

• Best Case

• Average Case

01-10: Example: Insertion Sort

N−1
∑

j=1

Itrj ∗ C10 +N ∗ C11 + C12

• Best case

N ∗ C11 + C12

01-11: Example: Insertion Sort

N−1
∑

j=1

Itrj ∗ C10 +N ∗ C11 + C12

• Worst Case

N−1
∑

j=1

j ∗ C10 +N ∗ C11 + C12 =
(N)(N − 1)

2
∗ C10 +N ∗ C11 + C12

01-12: Example: Insertion Sort

N−1
∑

j=1

Itrj ∗ C10 +N ∗ C11 + C12

• Average Case

•
∑

All Possible Occurrences i

T ime(i) ∗ P (i)

• Calculating P (i) can be difficult

• Often assume that all instances are equally likely

• Is that always a good assumption?

s 01-13: Constants

• Constants & lower order terms can be ugly:

N−1
∑

j=1

j ∗ C10 +N ∗ C11 + C12 =
(N − 1)(N − 2)

2
∗ C10 +N ∗ C11 + C12

• Fortunately, these constant & lower order terms don’t matter!

CS673-2016F-01 Algorithm Analysis 4

01-14: Constants

n 8n2
− 2n− 3 Time n2 Time

10 777 0.0007 sec 100 0.0001 sec

100 79797 0.0062 sec 10000 0.01 sec

1000 7.998 ∗ 106 7.98 sec 106 1 sec

10000 7.9998 ∗ 108 13 min 108 1.6 min

100000 7.99998 ∗ 1010 22 hours 1010 2 hours

1000000 8 ∗ 1012 91 days 1012 11 days

01-15: Constants
n 6n+ 3 Time 99n Time

10 63 0.00006 sec 990 0.00099 sec

100 603 0.0006 sec 9900 0.0099 sec

1000 6003 0.006 sec 99000 0.099 sec

10000 60003 0.06 sec 990000 0.99 sec

100000 600003 0.6 sec 9900000 9.9 sec

1000000 6 ∗ 106 6 sec 9.9 ∗ 107 99 sec

01-16: Do Constants Matter?

Comparing a recurive version of Binary Search with iterative version of linear search

• Linear Search requires time c1 ∗ n, for some c1

• Binary Search requires time c2 ∗ lg(n), for some c2

What if there is a very high overhead cost for function calls?

What if c2 is 1000 times larger than c1?

01-17: Constants Do Not Matter!

Length of list Time Required for Time Required for

Linear Search Binary Search

10 0.001 seconds 0.3 seconds

100 0.01 seconds 0.66 seconds

1000 0.1 seconds 1.0 seconds

10000 1 second 1.3 seconds

100000 10 seconds 1.7 seconds

1000000 2 minutes 2.0 seconds

10000000 17 minutes 2.3 seconds

1010 11 days 3.3 seconds

1015 30 centuries 5.0 seconds

1020 300 million years 6.6 seconds

01-18: Big-O Notation

O(g(n)) = {f(n) | ∃c, n0, s.t.

f(n) ≤ cg(n) whenever n > n0}

f(n) ∈ O(g(n)) means:

• f is bound from above by g

• f grows no faster than g

• g is an upper bound on f

CS673-2016F-01 Algorithm Analysis 5

01-19: Big-Ω Notation

Ω(g(n)) = {f(n) | ∃c, n0, s.t.

cf(n) ≥ g(n) whenever n > n0}

f(n) ∈ Ω(g(n)) means:

• f is bound from below by g

• g grows no faster than f

• g is a lower bound on f

01-20: Big-Θ Notation

Θ(g(n)) = {f(n) | ∃c1, c2, n0, s.t.

c1g(n) ≤ f(n) ≤ c2g(n)

whenever n > n0}

Alternately,

Θ(g(n)) = O(g(n))
⋂

Ω(g(n))

01-21: Big-Θ Notation

Show:

3n2 + 4n ∈ Θ(n2)

01-22: Big-Θ Notation

Show:

3n2 + 4n ∈ Θ(n2)

c1 ∗ n2 ≤ 3n2 + 4n ≤ c2 ∗ n2

True, as long as c1 ≤ 3 + 4/n, c+ 2 ≥ 3 + 4/n

(since n > n0, we can assume 4/n ≤ 1)

01-23: Big-Θ Notation

Verify:

4n3 6∈ Θ(n2)

01-24: Big-Θ Notation

Verify:

4n3 6∈ Θ(n2)

CS673-2016F-01 Algorithm Analysis 6

4n3 ≤ c1n
2

4n ≤ c1

which is not true for any constant c1
01-25: Big-Θ Notation

• We can drop all constants and lower order terms when finding the Θ running time of a quadratic

k
∑

i=0

ain
i ∈ Θ(nk)

01-26: Big-Θ in Equations

• f(n) = Θ(g(n)) is shorthand for f(n) ∈ Θ(g(n))

• n2 + 3n+ 2 = n2 +Θ(n) Means ∃f(n) ∈ Θ(n) such that n2 + 3n+ 2 = n2 + f(n)

This can lead to some weirdness:

• n2 + 2n+ 3 = 5n+Θ(n2)

• n2 + 2n+ 3 = 6n+O(n4)

01-27: Loose & Tight Bounds

• O() may or may not be tight:

• n2 + 2n+ 3 ∈ O(n2)

• n2 + 2n+ 3 ∈ O(n4)

• We have a notation for tight bound (Θ), and we also have a notation for a bound that is not tight:

o(g(n)) = {f(n) | ∀c > 0, ∃n0 > 0 s.t.

0 ≤ f(n) < cg(n) whenever n ≥ n0}

01-28: Loose & Tight Bounds

o(g(n)) = {f(n) | ∀c > 0, ∃n0 > 0 s.t.

0 ≤ f(n) < cg(n) whenever n ≥ n0}

• 4n ∈ o(n2)

• 3n2 6∈ o(n2)

• n2 6∈ o(n2)

CS673-2016F-01 Algorithm Analysis 7

01-29: little-o

o(g(n)) = {f(n) | ∀c > 0, ∃n0 > 0 s.t.

0 ≤ f(n) < cg(n) whenever n ≥ n0}

f(n) ∈ o(g(n)) ⇒ lim
n→∞

f(n)

g(n)
= 0

01-30: little-ω

ω(g(n)) = {f(n) | ∀c > 0, ∃n0 > 0 s.t.

0 ≤ cg(n) < f(n) whenever n ≥ n0}

f(n) ∈ ω(g(n)) ⇒ lim
n→∞

f(n)

g(n)
= ∞

01-31: O, o,Ω, ω,Θ

True or false:

• f(n) ∈ Θ(g(n)) → f(n) ∈ O(g(n))

• f(n) ∈ O(g(n)) → g(n) ∈ Ω(f(n))

• f(n) ∈ O(g(n)) → f(n) ∈ o(g(n))

• f(n) ∈ o(g(n)) → f(n) ∈ O(g(n))

• f(n) ∈ o(g(n)) → f(n) ∈ Θ(g(n))

• For any two functions f(n), g(n), either f(n) ∈ O(g(n)) or f(n) ∈ Ω(g(n))

01-32: O, o,Ω, ω,Θ

True or false:

• f(n) ∈ Θ(g(n)) → f(n) ∈ O(g(n)) True

• f(n) ∈ O(g(n)) → g(n) ∈ Ω(f(n)) True

• f(n) ∈ O(g(n)) → f(n) ∈ o(g(n)) False, n ∈ O(n), n 6∈ o(n)

• f(n) ∈ o(g(n)) → f(n) ∈ O(g(n)) True.

• f(n) ∈ o(g(n)) → f(n) ∈ Θ(g(n)) False. In fact, f(n) ∈ o(g(n)) → f(n) 6∈ Θ(g(n))

• For any two functions f(n), g(n), either f(n) ∈ O(g(n)) or f(n) ∈ Ω(g(n)). False. Consider f(n) = n,

g(n) = n1+sinn

01-33: Summations

• We will assume you’ve seen inductive proof that
∑n

i=1 i =
n(n+1)

2 (check Appendix A in the text otherwise!)

CS673-2016F-01 Algorithm Analysis 8

• Can use induction to prove bounds as well. Show:

n
∑

i=1

3i = O(3n)

01-34: Summations
n
∑

i=1

3i = O(3n)

• Base Case:

•
1
∑

i=1

31 = 3 ≤ c ∗ 31 as long as c ≥ 1

01-35: Summations
n
∑

i=1

3i = O(3n)

• Recursive Case:

n+1
∑

i=1

3i =

n
∑

i=1

3i + 3n+1

≤ c3n + 3n+1

= (1/3 + 1/c)c3n+1

≤ c3n+1

As long as (1/3 + 1/c) ≤ 1, or c ≥ 3/2
01-36: Summations

Beware! What’s wrong with this proof?
n
∑

i=1

i ∈ O(n)

• Base case:
1
∑

i=1

i = O(1)

• Inductive case:

n+1
∑

i=1

i =

n
∑

i=1

i+ (i + 1)

= O(n) + (n+ 1)

= O(n)

01-37: Bounding Summations

n
∑

i=1

ai ≤ n ∗ amax

for instance:
n
∑

i=1

i ≤ n2 ∈ O(n2)

and

CS673-2016F-01 Algorithm Analysis 9

n
∑

i=1

ai ≥ n ∗ amin

for instance:
n
∑

i=1

i ≥ 1 ∗ n ∈ Ω(n)

(note that the bounds are not always tight!)

01-38: Splitting Summations

We can sometimes get tighter bounds by splitting the summation:

n
∑

i=1

i =

⌊n/2⌋
∑

i=1

i+

n
∑

i=⌊n/2⌋+1

i

≥ n/2 ∗ 1 + n/2 ∗ n/2
≥ (n/2)2

∈ Ω(n2)

01-39: Splitting Summations

We can split summations in more tricky ways, as well. Consider the harmonic series:

Hn =

n
∑

i=1

1

n

How could we split this to get a good upper bound?

01-40: Splitting Summations

We can split summations in more tricky ways, as well. Consider the harmonic series:

Hn =

n
∑

i=1

1

n

How could we split this to get a good upper bound?

HINT: The solution we are looking for is Hn ∈ lg(n)
01-41: Splitting Summations

Hn =

n
∑

i=1

1

i

≤
⌊lgn⌋
∑

i=0

2i−1
∑

j=0

1

2i + j

≤
⌊lgn⌋
∑

i=0

2i−1
∑

j=0

1

2i

≤
⌊lgn⌋
∑

i=0

1

≤ lgn+ 1

01-42: Summations & Code

CS673-2016F-01 Algorithm Analysis 10

for (i = 1; i <= n; i++)

for (j = 1; j <= i; j++)

sum++;

01-43: Summations & Code

for (i = 1; i <= n; i++)

for (j = 1; j <= i; j++)

sum++;

n
∑

i=1

i =
n(n+ 1)

2
∈ Θ(n2)

01-44: Summations & Code

for (i = 1; i < n; i = i * 2)

for (j = 1; j < i; j++)

sum++;

vs

for (i = 1; i < n; i = i + 1)

for (j = 1; j < i; j = j * 2)

sum++;

01-45: Summations & Code

for (i = 1; i < n; i = i * 2)

for (j = 1; j < i; j++)

sum++;

lgn
∑

i=1

2i ∈ Θ(n)

for (i = 1; i < n; i = i + 1)

for (j = 1; j < i; j = j * 2)

sum++;

n
∑

i=1

lg n ∈ Θ(n lgn)

01-46: More Summations

• More information on manipulation of summations is in Appendix A

• (pages 1147 – 1157 in the text)

• Read over Appendix A for review

CS673-2016F-01 Algorithm Analysis 11

• (Should also read Chapter 2 – I’m assuming that is all review for all of you. Let me know if it is not)

01-47: Recursive Algorithms

• Summations are used to calculate running times for iterative programs

• Recursive Algorithms use Recurrence Relations

• T (n) is a function that returns the time it takes to solve a problem of size n, for a particular recursive

algorithm

• Definition of T (n) is similar to (but not the same as!) the recursive function itself

• Usually have a base case and a recursive case

01-48: Recurrence Relations

MergeSort(A,low,high) {

if (low < high) {

mid = floor ((low + high / 2))

MergeSort(A,low,mid)

MergeSort(A,mid+1,high)

Merge(A,low,mid,high)

}

}

01-49: Recurrence Relations

MergeSort(A,low,high) {

if (low < high) {

mid = floor ((low + high / 2))

MergeSort(A,low,mid)

MergeSort(A,mid+1,high)

Merge(A,low,mid,high)

}

}

T (0) = Θ(1)

T (1) = Θ(1)

T (n) = T
(⌈n

2

⌉)

+ T
(⌊n

2

⌋)

+Θ(n)

01-50: Recurrence Relations

• How do we solve recurrence relations?

• Substitution Method

• Guess a solution

• Prove the guess is correct, using induction

CS673-2016F-01 Algorithm Analysis 12

T (1) = 1

T (n) = 2T
(⌊n

2

⌋)

+ n

01-51: Substitution Method

• Inductive Case

T (n) = 2T
(⌊n

2

⌋)

+ n

≤ 2
(

c
n

2
lg

n

2

)

+ n

= cn lgn− cn lg 2 + n

= cn lgn− cn+ n

≤ cn lgn

01-52: Substitution Method

• Base Case

T (1) = 1

T (n) ≤ cn lgn

T (1) ≤ c ∗ 1 ∗ lg 1
T (1) ≤ c ∗ 1 ∗ 0 = 0

Whoops! If the base case doesn’t work the inductive proof is broken! What can we do?

01-53: Substitution Method

• Fixing the base case

Note that we only care about n > n0, and for n > 3, recurrence does not depend upon T (1) except through T (2)
and T (3)

T (2) = 4 ≤ 2 ∗ c ∗ lg 2
T (3) = 5 ≤ 3 ∗ c ∗ lg 3

(for c > 2) 01-54: Substitution Method

• Sometimes, the math doesn’t work out in the substitution method:

CS673-2016F-01 Algorithm Analysis 13

T (1) = 1

T (n) = T
(⌊n

2

⌋)

+ T
(⌈n

2

⌉)

+ 1

(Work on board)

01-55: Substitution Method Try T (n) ≤ cn:

T (n) = T
(⌊n

2

⌋)

+ T
(⌈n

2

⌉)

+ 1

≤ c
⌊n

2

⌋

+ c
⌈n

2

⌉

+ 1

≤ cn+ 1

We did not get back T (n) ≤ cn – that extra +1 term means the proof is not valid. We need to get back exactly

what we started with (see invalid proof of
∑n

i=1 i ∈ O(n) for why this is true)

01-56: Substitution Method Try T (n) ≤ cn− b:

T (n) = T
(⌊n

2

⌋)

+ T
(⌈n

2

⌉)

+ 1

≤ c
⌊n

2

⌋

− b+ c
⌈n

2

⌉

− b+ 1

≤ cn− 2b+ 1

≤ cn− b

As long as b ≥ 1
01-57: Substitution Method

• Substitution method can verify the solution to a recurrence relation, but how can we get our original guess?

• Compare to similar problems

• T (n) = 2T (⌊n
2 ⌋ − 1) + 3n+ 2 similar to T (n) = 2T

(

⌊n
2 ⌋

)

+ n

• Start with loose bounds, tighten them to get a tight bound

• Recursion Trees

01-58: Recursion Trees

T (n) = 2T (n/2) + cn

01-59: Recursion Trees

T (n) = T (n− 1) + cn

01-60: Recursion Trees

T (n) = T (n/2) + c

01-61: Recursion Trees

CS673-2016F-01 Algorithm Analysis 14

T(n) = 3T(n/4) + cn 2

01-62: Recursion Trees

T(n) =

T(n/4) T(n/4) T(n/4)

 cn2 +

+ +

01-63: Recursion Trees

T(n) =

T(n/4) T(n/4) T(n/4)

 cn2 +

+ +

T(n/4) = 3T(n/16) + c(n/4)
2

01-64: Recursion Trees

T(n) = cn2

2c(n/4) 2c(n/4) 2c(n/4)

T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16)T(n/16)

T(n/16) = T(n/32) + c(n/16)
2

01-65: Recursion Trees

 cn2

2c(n/4) 2c(n/4) 2c(n/4)

2c(n/16) 2c(n/16)2c(n/16)2c(n/16) 2c(n/16) 2c(n/16) 2c(n/16) 2c(n/16) 2c(n/16)

... ...

...

...

...

...

1 1 1 1 1 1 1 1 1 1 1...1 1 1 1 1 1 1 1 1

CS673-2016F-01 Algorithm Analysis 15

01-66: Recursion Trees

 cn2

2c(n/4) 2c(n/4) 2c(n/4)

2c(n/16) 2c(n/16)2c(n/16)2c(n/16) 2c(n/16) 2c(n/16) 2c(n/16) 2c(n/16) 2c(n/16)

... ...

...

...

...

...

 cn2

(3/4) cn2

(3 /(4)) cn22

lo
g

 n

4

log 3
n 4

1 1 1 1 1 1 1 1 1 1 1...1 1 1 1 1 1 1 1 1

2

2

(3 /(4)) cn2ii

01-67: Recursion Trees

T (n) =

log4 n
∑

i=0

(

3i

42i

)

cn2 +
nlog4 3
∑

i=0

1

<

log4 n
∑

i=0

(

3

4

)i

cn2 + nlog4 3

<

∞
∑

i=0

(

3

4

)i

cn2 + nlog4 3

=
1

1− 3/4
cn2 + nlog4 3

= 4cn2 + nlog4 3

∈ O(n2)

(now prove bound using substitution method) 01-68: Recursion Trees

T(n) = T(n/3) + T(2n/3) + cn

01-69: Recursion Trees

 cn

c(n/3) c(2n/3)

c(n/9)

... ...

...

...

...

 cn

<
=

 l
o
g

n

3
/2

T(n) = T(n/3) + T(2n/3) + cn

c(2n/9) c(2n/9) c(4n/9)

c(n/27) c(2n/27) c(2n/27) c(4n/27) c(2n/27) c(4n/27) c(4n/27) c(8n/27)

 cn

 cn

 cn

O(n lg n)

...

01-70: Recursion Trees

• There is a small problem – this tree is actually irregular in shape!

CS673-2016F-01 Algorithm Analysis 16

01-71: Recursion Trees

T(n) = T(n/3) + T(2n/3) + cn

lo
g
 n
3
/2

lo
g

n

3

01-72: Recursion Trees
T(n) = T(n/3) + T(2n/3) + cn

lo
g
 n
3

/2

lo
g

n

3

2
log n

n
log 2

3/23/2
= = ω(n lg n)

01-73: Recursion Trees

• If we are only using recursion trees to create a guess (that we will later verify using substitution method), then

we can be a little sloppy.

• Show T (n) = T (n/3) + T (2n/3) + cn ∈ O(n lg n)

01-74: Renaming Variables

• Consider:

T (1) = 1

T (n) = 2T
(√

n
)

+ lgn

CS673-2016F-01 Algorithm Analysis 17

• The
√

is pretty ugly – how can we make it go away?

• Rename variables!

01-75: Renaming Variables

T (1) = 1

T (n) = 2T
(√

n
)

+ lgn

Let m = lgn, (and so n = 2m)

T (2m) = 2T
(√

2m
)

+ lg 2m

= 2T
(

2m/2
)

+m

01-76: Renaming Variables

T (2m) = 2T
(

2m/2
)

+m

Now let S(m) = T (2m)

S(m) = T (2m)

= 2T
(

2m/2
)

+m

= 2S
(m

2

)

+m

01-77: Renaming Variables

S(m) = 2S
(m

2

)

+m

≤ cm lgm

So:

T (n) = T (2m)

= S(m)

≤ cm lgm

= c lgn lg lg n

01-78: Master Method

T (n) = aT (n/b) + f(n)

CS673-2016F-01 Algorithm Analysis 18

1. if f(n) ∈ O(nlogb a−ǫ) for some ǫ > 0, then T (n) ∈ Θ(nlogb a)

2. if f(n) ∈ Θ(nlogb a) then T (n) ∈ Θ(nlogb a ∗ lgn)

3. if f(n) ∈ Ω(nlogb a+ǫ) for some ǫ > 0, and if af(n/b) ≤ cf(n) for some c < 1 and large n, then T (n) ∈
Θ(f(n))

01-79: Master Method

T (n) = 9T (n/3) + n

01-80: Master Method

T (n) = 9T (n/3) + n

• a = 9, b = 3, f(n) = n

• nlogb a = nlog3 9 = n2

• n ∈ O(n2−ǫ)

T (n) = Θ(n2)
01-81: Master Method

T (n) = T (2n/3) + 1

01-82: Master Method

T (n) = T (2n/3) + 1

• a = 1, b = 3/2, f(n) = 1

• nlogb a = nlog3/2 1 = n0 = 1

• 1 ∈ O(1)

T (n) = Θ(1 ∗ lg n) = Θ(lgn)
01-83: Master Method

T (n) = 3T (n/4) + n lg n

01-84: Master Method

T (n) = 3T (n/4) + n lg n

• a = 3, b = 4, f(n) = n lgn

• nlogb a = nlog4 3 = n0.792

• n lgn ∈ Ω(n0.792+ǫ)

• 3(n/4) lg(n/4) ≤ c ∗ n lgn

CS673-2016F-01 Algorithm Analysis 19

T (n) ∈ Θ(n lg n)
01-85: Master Method

T (n) = 2T (n/2) + n lg n

01-86: Master Method

T (n) = 2T (n/2) + n lg n

• a = 2, b = 2, f(n) = n lgn

• nlogb a = nlog2 2 = n1

Master method does not apply!

n1+ǫ grows faster than n lgn for any ǫ > 0
Logs grow incredibly slowly! lgn ∈ o(nǫ) for any ǫ > 0

01-87: Master Method

• Proof Sketch (not all formal, see textbook for details)

• We will consider the recursion tree for T (n) = aT (n/b) + f(n)

(We’ll assume that n is an exact power of b, to simplify the math. See the textbook for a complete proof)

01-88: Master Method
f(n)

f(n/b) f(n/b) f(n/b)

f(n/b)
2

f(n/b)
2

f(n/b)
2

f(n/b)
2

f(n/b)
2

f(n/b)
2

f(n/b)
2

f(n/b)
2

f(n/b)
2

f(n)

af(n/b)

a f(n/b)2 2
...

...

...

...

...

O(1) O(1)O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1)... ...

lo
g

 n

b

a
log n

b n
log a

b=

01-89: Master Method

T (n) =

logb n−1
∑

i=0

aif
(n

bi

)

+ cnlogb a

• Case 1: Leaves of recursion tree dominate cost

• Case 2: Cost is evenly divided amoung all levels in the tree

• Case 3: Root dominates the cost

(see the textbook for the algebra)

