Graduate Algorithms CS673-2016F-10 Greedy Algorithms

David Galles

Department of Computer Science University of San Francisco

10-0: Dynamic Programming

- Hallmarks of Dynamic Programming
 - Optimal Program Substructure
 - Overlapping Subproblems
- If a problem has optimal program structure, there may be a faster method than dynamic programming

10-1: Greedy Algorithms

- Always takes the step that seems best in the short run
 - Locally Optimal Choice
- With some problems, this can lead to an optimal solution
 - Globally Optimal Solution

10-2: Greedy Algorithms

Matrix Chain Multiplication

- What would the locally optimal choice be?
- Will that lead to a globally optimal solution?

10-3: Greedy Algorithms

- Matrix Chain Multiplication
 - What would the locally optimal choice be?
 - Choose k to minimize just $p_{i-1}p_kp_j$
 - (Don't consider how long subproblems take)
 - Will that lead to a globally optimal solution?
 - No!
 - Left as "an exercise to the reader"
- Need to be sure that the greedy solution is correct before you use it!

10-4: Activity Scheduling

- *n* activities to schedule $S = \{a_1, a_2, \ldots, a_n\}$
- Each activity has a start time and an end time
- Two activities are compatible if their times do not overlap
- Problem: Find a maximal subset S' of S such that all activities in S' are compatible with each other

10-5: Activity Scheduling

- Solution
 - Sort the activities by increasing end time
 - Go through the list in order, selecting each activity that is compatible with all previously selected activities
- Why does this work?

10-6: **Proving Greedy**

- To prove a greedy algorithm is correct:
 - Greedy Choice
 - At least one optimal solution contains the greedy choice
 - Optimal Substructure
 - An optimal solution can be made from the greedy choice plus an optimal solution to the remaining subproblem
- Why is this enough?

10-7: Activity Selection

- Activity Selection problem:
 - Prove Greedy Choice
 - Prove Optimal Substructure

10-8: Proving Greedy Choice

- Let *a*₁ be the activity that ends first greedy choice.
- Let S be an optimal solution to the problem.
- If S contains a_1 , then we are done.

10-9: Proving Greedy Choice

- Let *a*₁ be the activity that ends first greedy choice.
- Let S be an optimal solution to the problem.
- If S does not contain a_1 :
 - Let a_k be the first activity in S. Remove a_k from S to get S'.
 - Since no activity in S' conflicts with a_k , all activities in S' must start after a_k finishes.
 - Since a_1 ends at or before when a_k ends, all activities in S' start after a_1 finishes and a_1 is compatible with all activities in S'
 - Add a_1 to S' to get S''. |S''| = |S|, and hence S'' is optimal, and contains a_1

10-10: Proving Optimal Substructure

- Proof by contradiction: Assume no optimal solution that contains the greedy choice has optimal substructure
- Let *S* be an optimal solution to the problem, which contains the greedy choice
- Consider $S' = S \{a_1\}$. S' is not an optimal solution to the problem of selecting activities that do not conflict with a_1
- Let S'' be an optimal solution to the subproblem of picking activities that do not conflict with a_1 .
- Consider $S''' = S'' \cup \{a_1\}$. S''' is a valid solution to the problem, |S'''| = |S''| + 1 > |S'| + 1 = |S| (since S' is not optimal).

10-11: Proving Optimal Substructure

- Proof by contradiction: Assume no optimal solution that contains the greedy choice has optimal substructure
- Let *S* be an optimal solution to the problem, which contains the greedy choice

• S is thus not optimal, a contradiction

10-12: Activity Scheduling

- WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that *all* greedy solutions lead to an optimal solution
 - Picking the activity with the earliest start time can lead to a non-optimal solution

10-13: Activity Scheduling

- WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that *all* greedy solutions lead to an optimal solution
 - Picking the activity with the earliest start time can lead to a non-optimal solution

10-14: Activity Scheduling

- WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that *all* greedy solutions lead to an optimal solution
 - Picking the activity with the shortest duration can lead to a non-optimal solution

10-15: Activity Scheduling

- WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that *all* greedy solutions lead to an optimal solution
 - Picking the activity with the shortest duration can lead to a non-optimal solution

10-16: Activity Scheduling

- WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that *all* greedy solutions lead to an optimal solution
 - Picking the activity with the smallest # of conflicts can lead to a non-optimal solution

10-17: Activity Scheduling

- WARNING: Just because there is a greedy algorithm that leads to an optimal solution does not mean that *all* greedy solutions lead to an optimal solution
 - Picking the activity with the smallest # of conflicts can lead to a non-optimal solution

10-18: Greedy Algorithms

• Dynamic vs. Greedy

- It can sometimes be difficult to tell when a Greedy Algorithm can be used, and when Dynamic Programming must be used
- Subtle changes in a problem can kill greedy choice

10-19: Knapsack Problem

- Thief has a knapsack (backpack) that can hold k pounds
- *n* elements, each of which has a value and a weight
- Add items to the backpack to maximize total value
 - What are some greedy solutions?
 - Do they produce optimal solutions?

10-20: Knapsack Problem

 Pick most densely valued items first: Knapsack holds 100 pounds

Weight	Value	Value / Weight
60	70	7/6
50	50	1
45	45	1

• No other greedy algorithm works, either

10-21: Fractional Knapsack

- Thief has a knapsack (backpack) that can hold k pounds
- *n* elements, each of which has a value and a weight
- Add items to the backpack to maximize total value
 - This time you can take a fraction of any item
 - Like gold dust
- Is there a greedy algorithm for this problem? Can you prove it?

10-22: 0-1 Knapsack Problem

- Standard version of the knapsack problem
 - Can't take fractional items
- Order of elements by increasing weight = order by decreasing value
- Is there a valid greedy algorithm for this problem?

10-23: Driving Problem

- Need to get across the country in a car
 - Gas tank holds enough gas for n miles
 - Have a chart with location of all gas stations on it
 - Want to make as few stops as possible
- How do we decide which stations to stop at?

10-24: Job Scheduling

- Series of jobs to execute on a uniprocessor machine
- Each job takes a different amount of time to complete
 - j_1, j_2, \ldots, j_n
- Want to minimize the average wait time
 - Same as minimizing the total wait time (why?)
- Algorithm?
- Correctness Proof?

10-25: Huffman Coding

- Standard encoding (ASCII)
 - Each letter uses the same number of bits
- We'd like to use fewer bits for more common letters, more bits for less common letters
 - Use less space overall for the file

10-26: Huffman Coding

• If different letters use a different # of bits, how do we determine which bits go with which letter?

10-27: Huffman Coding

- If different letters use a different # of bits, how do we determine which bits go with which letter?
- Prefix Codes
 - No code is a prefix of any other code
 - Decoding is unambiguous

10-28: Huffman Coding

		а	b	С	d	е	f
Frequency		43K	12K	12k	16k	9k	5k
Fixed-Length		000	001	010	011	100	101
Variable-Length		0	101	100	111	1101	1100
Input	Fixed-Len	Variable-Length					
abc	000001010		0101				
fee	101100100		1100110111011				
aaba	a 00000001000		001010				

10-29: Huffman Coding

- abaac
- 11010010111000100

10-30: Huffman Coding

- abaac \Rightarrow 010100100
- $11010010111000100 \Rightarrow eaabfac$

10-31: Huffman Coding

	а	b	С	d	е	f
Frequency	43K	12K	12k	16k	9k	5k
Fixed-Length	000	001	010	011	100	101
Variable-Length	0	101	100	111	1101	1100

- Total size of file in fixed-length encoding: 300K bits
- Total size of file in variable-length encoding: 224k bits

10-32: Huffman Coding

- Are fixed-length codes prefix codes?
 - Can we form a binary tree for fixed-length codes?
- What is the cost of a tree T for a specific file (given the frequency f[c] of each character c in the file)?

10-33: Huffman Coding

- Are fixed-length codes prefix codes?
 - Can we form a binary tree for fixed-length codes?
- What is the cost of a tree T for a specific file (given the frequency f[c] of each character c in the file)?

$$B(T) = \sum_{c \in T} f[c] * d_T(c)$$

 $(d_T(c))$ is the depth of the character c in the tree T)

10-34: Huffman Coding

- Build a tree to minimize $B(T) = \sum_{c \in T} f[c] * d_T(c)$
 - Create set of trees: one for each character in the input file
 - Each tree has a single node w/ character & frequency information
 - While > 1 tree in the set:
 - Take the two trees with the smallest frequency, t_1, t_2
 - Create a new root, with t_1 and t_2 as subtrees
 - $f[root] = f[t_1] + f[t_2]$

Letter a b c d e f Frequency 3 7 40 20 15 13

10-35: Huffman Coding

- Do Huffman codes produce optimal trees?
 - Greedy Choice
 - Optimal Substructure

10-36: Huffman Coding

- Greedy Choice
 - Optimal tree T
 - Alphabet C, f[c] = frequency of $c \in C$
 - x, y two characters in C with lowest frequency
 - a, b lowest-depth siblings in T
 - Swap a with x, and b with y, to get T'

10-37: Huffman Coding

$$\begin{aligned} (T) - B(T') &= \sum_{c \in T} f[c] * d_T(c) - \sum_{c' \in T'} f[c'] d_{T'}(c') \\ &= f[a] (d_T(a) - d_{T'}(a)) + f[b] (d_T(b) - d_{T'}(b)) \\ &+ f[x] (d_T(x) - d_{T'}(x)) + f[y] (d_T(y) - d_{T'}(y)) \\ &= f[a] (d_T(a) - d_{T'}(a)) + f[x] (d_T(x) - d_{T'}(x)) \\ &+ f[b] (d_T(b) - d_{T'}(b)) + f[y] (d_T(y) - d_{T'}(y)) \\ &= (f[a] - f[x]) (d_T(a) - d_{T'}(a)) \\ &+ (f[b] - f(y)) (d_T(b) - d_{T'}(b)) \end{aligned}$$

 ≥ 0

• $B(T') \leq B(T)$

B

• If T is optimal, T' is, too

10-38: Huffman Coding

Optimal Substructure

- Let T be optimal tree
- x, y sibling nodes in T, z is the parent
- Consider z to be a character with frequency $f[\boldsymbol{x}] + f[\boldsymbol{y}]$
- $T' = T \{x, y\}$ is an optimal prefix code for $C' = C \{x, y\} \cup \{z\}$
- Cost B(T) in terms of cost B(T'):

10-39: Huffman Coding

• Cost B(T) in terms of cost B(T'): • $\forall c \in C - \{x, y\}, d_T(c) = d_{T'}(c)$, so $f[c]d_T[c] = f[c]d_{T'}(c)$

$f[x]d_T(x) + f[y]d_T[y] = (f[x] + f[y])(d_{T'}(z) + 1)$ = $f[z]d_{T'}(z) + f[x] + f[y]$

- B(T) = B(T') + f[x] + f[y]
- So, if T' is not optimal, neither is T

- Matriod is a pair: M = (S, I)
 - S is a finite, nonempty set
 - *I* is a nonempty family of subsets of *S*, called "Independent subsets" of *S* such that:
 - if $B \in I$ and $A \subseteq B$, then $A \in I$ (Hereditary Property)
 - If $A \in I$ and $B \in I$ and |A| < |B|, there is some element $x \in B$ such that $A \cup \{x\} \in I$ (Exchange Property)

10-41: Matroids

- Originally, Matroids used to describe matrices
 - S = rows of a matrix
 - I = sets of linearly independent rows
 - Hence the name, independent subsets
 - Matrix matroids have both hereditary and exchange properties

10-42: Example Matroids

- S = edges of an undirected graph G
- I = Subsets of S that do not form a directed cycle

(Examples on board)

10-43: Example Matroids

• Undirected graphs / I = acyclic subsets

• Hereditary property

10-44: Example Matroids

- Undirected graphs / I = acyclic subsets
 - Hereditary property
 - Trivial
 - If a graph is acyclic, any subset of edges will also be acyclic

10-45: Example Matroids

- Undirected graphs / I = acyclic subsets
 - Exchange Property
 - $|\bullet A, B \in I, |A| < |B|$
 - A is a forest of |V| |A| trees (why?)
 - B is a forest of |V| |B| trees
 - Must be some edge in *B* that spans two different trees in *A* (why?)

10-46: Weighted Matroids

• Weighted Matroid:

- Positive weight w(x) for each element $x \in S$
- Weight of any member of I is sum of weights of elements of I
- Optimal subset of S is an element of I with maximal weight
- Problem: Find an optimal subset of S
 - What would greedy solution look like?
 - Does it work?

10-47: Weighted Matroids

$$\begin{array}{l} \operatorname{Greedy}(M,w) \\ A \leftarrow \{\} \\ \operatorname{sort} S[M] \text{ in non-increasing order by } w \\ \operatorname{for each} x \in S[M] \text{ (in non-decreasing order)} \\ \operatorname{if} A \cup \{x\} \in I[M] \\ A \leftarrow A \cup \{x\} \\ \operatorname{return} A \end{array}$$

10-48: Weighted Matroids

- To show that a greedy algorithm is correct (produces optimal solutions) we need to show:
 - Greedy Choice
 - There exists a solution that contains the greedy choice
 - Optimal Substructure
 - Optimal solutions are composed of optimal solutions to subproblems

10-49: Weighted Matroids

Greedy Choice

- Let {x} be independent element with largest weight
- Show that there is some maximal matroid that contains *x*.
- What should we do?

10-50: Weighted Matroids

- Let {x} be independent element with largest weight
- Let B be a maximal matroid
 - If B contains x, we are done
 - If B does not contain x, we can create a set A:
 - start with $A = \{x\}$
 - Use exchange property to add elements to A from b until |A| = |B|
 - weight(A) = weight(B) weight(y) + weight(x)
 - y is element of B not added to A
 - weight(x) \geq weight(y) (why?)

10-51: Weighted Matroids

Optimal substructure

- Let x be first element chosen by Greedy from $M=\left(S,I\right)$
- Remaining subproblem: find maximal weight indep. subset of M' = (S', I'):

•
$$S' = \{y \in S : \{x, y\} \in I\}$$

•
$$I' = \{B \subseteq S - \{x\} : B \cup \{x\} \in I\}$$

10-52: Weighted Matroids

- If an optimization problem is finding a maximal weighted matroid, then greedy will work.
- Minimum Cost Spanning Tree (MST)
 - Undirected graph G, each edge k has a positive weight w_k
 - Find a spanning tree (connected, acyclic subset of edges) that has minimum cost
- Is the MST problem a maximal weighted matroid problem?

10-53: Weighted Matroids

- If an optimization problem is finding a maximal weighted matroid, then greedy will work.
- Minimum Cost Spanning Tree (MST)
 - Undirected graph G, each edge k has a positive weight w_k
 - Find a spanning tree (connected, acyclic subset of edges) that has minimum cost
- Is the MST problem a weighted matroid?
 - Want to find minimal total weight, not maximal
 - Replace each weight w_k with $w_0 w_k$, where w_0 is larger than any weight on the graph

• Greedy solution will work (Kruskal's algorithm)

10-54: Weighted Matroids

- Example: Unit tasks with deadlines and penalties
 - Set $S = \{a_1, a_2, \dots, a_n\}$ of n unit-time tasks
 - Set of n deadlines $d_1, \ldots d_n$
 - Set of n non-negative penalties w_1, w_2, \ldots, w_n
- Schedule all n tasks. Each task a_k that is completed after time d_k incurs penalty w_k .
- What is the optimal schedule (smallest overall penalty)?

10-55: Weighted Matroids

- Example: Unit tasks with deadlines and penalties
 - Any schedule can be re-arranged so that:
 - All on-time tasks are scheduled before all late tasks
 - On-time tasks are completed by order of deadline
 - To create a schedule, decide which tasks will be done on time, and which will be late. Then, order early tasks by increasing deadline, and late tasks afterwards in any order.

10-56: Weighted Matroids

- Example: Unit tasks with deadlines and penalties
 - S = set of tasks
 - *I* = set of subsets of tasks, where all tasks in *I* are early
- Hereditary Property?
- Exchange Property?

10-57: Weighted Matroids

- Example: Unit tasks with deadlines and penalties
 - S = set of tasks
 - *I* = set of subsets of tasks, where all tasks in *I* are early
- Hereditary Property
 - If we can schedule all elements in *I* on time, we can obviously schedule all elements of any subset of *I* in time as well.

10-58: Weighted Matroids

Exchange Property

- Let A and B be independent subsets, with |B| > |A|.
- $N_T(A)$ be the number of tasks in A that have a deadline if t or earlier
- Let k be the largest integer such that $N_k(B) \leq N_k(A)$

• $N_0(B) = N_0(A) = 0$, so such a k must exist

- $N_n(B) = |B|, N_n(A) = |A|, \text{ so } N_n(B) > N_n(A)$
- k < n, for all j in the range $k + 1 \dots n$, $N_j(B) > N_j(A)$.
- B contains more tasks with deadline k+1 than A does