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10-0: Dynamic Programming

Hallmarks of Dynamic Programming

Optimal Program Substructure

Overlapping Subproblems

If a problem has optimal program structure, there
may be a faster method than dynamic
programming



10-1: Greedy Algorithms

Always takes the step that seems best in the short
run

Locally Optimal Choice

With some problems, this can lead to an optimal
solution

Globally Optimal Solution



10-2: Greedy Algorithms

Matrix Chain Multiplication

What would the locally optimal choice be?

Will that lead to a globally optimal solution?



10-3: Greedy Algorithms

Matrix Chain Multiplication

What would the locally optimal choice be?
Choose k to minimize just pi−1pkpj
(Don’t consider how long subproblems take)

Will that lead to a globally optimal solution?
No!
Left as “an exercise to the reader”

Need to be sure that the greedy solution is correct
before you use it!



10-4: Activity Scheduling

n activities to schedule S = {a1, a2, . . . , an}

Each activity has a start time and an end time

Two activities are compatible if their times do not
overlap

Problem: Find a maximal subset S ′ of S such that
all activities in S ′ are compatible with each other



10-5: Activity Scheduling

Solution

Sort the activities by increasing end time

Go through the list in order, selecting each
activity that is compatible with all previously
selected activities

Why does this work?



10-6: Proving Greedy

To prove a greedy algorithm is correct:

Greedy Choice
At least one optimal solution contains the
greedy choice

Optimal Substructure
An optimal solution can be made from the
greedy choice plus an optimal solution to the
remaining subproblem

Why is this enough?



10-7: Activity Selection

Activity Selection problem:

Prove Greedy Choice

Prove Optimal Substructure



10-8: Proving Greedy Choice

Let a1 be the activity that ends first – greedy
choice.

Let S be an optimal solution to the problem.

If S contains a1, then we are done.



10-9: Proving Greedy Choice

Let a1 be the activity that ends first – greedy
choice.

Let S be an optimal solution to the problem.

If S does not contain a1:

Let ak be the first activity in S. Remove ak from
S to get S ′.

Since no activity in S ′ conflicts with ak, all
activities in S ′ must start after ak finishes.

Since a1 ends at or before when ak ends, all
activities in S ′ start after a1 finishes – and a1 is
compatible with all activities in S ′

Add a1 to S ′ to get S ′′. |S ′′| = |S|, and hence S ′′

is optimal, and contains a1



10-10: Proving Optimal Substructure

Proof by contradiction: Assume no optimal solution
that contains the greedy choice has optimal
substructure

Let S be an optimal solution to the problem, which
contains the greedy choice

Consider S ′ = S − {a1}. S
′ is not an optimal

solution to the problem of selecting activities that
do not conflict with a1

Let S ′′ be an optimal solution to the subproblem of
picking activities that do not conflict with a1.

Consider S ′′′ = S ′′ ∪ {a1}. S
′′′ is a valid solution to

the problem, |S ′′′| = |S ′′|+ 1 > |S ′|+ 1 = |S|
(since S ′ is not optimal).

S is thus not optimal, a contradiction



10-11: Proving Optimal Substructure

Proof by contradiction: Assume no optimal solution
that contains the greedy choice has optimal
substructure

Let S be an optimal solution to the problem, which
contains the greedy choice

. . .

S is thus not optimal, a contradiction



10-12: Activity Scheduling

WARNING: Just because there is a greedy
algorithm that leads to an optimal solution does not
mean that all greedy solutions lead to an optimal
solution

Picking the activity with the earliest start time
can lead to a non-optimal solution



10-13: Activity Scheduling

WARNING: Just because there is a greedy
algorithm that leads to an optimal solution does not
mean that all greedy solutions lead to an optimal
solution

Picking the activity with the earliest start time
can lead to a non-optimal solution



10-14: Activity Scheduling

WARNING: Just because there is a greedy
algorithm that leads to an optimal solution does not
mean that all greedy solutions lead to an optimal
solution

Picking the activity with the shortest duration
can lead to a non-optimal solution



10-15: Activity Scheduling

WARNING: Just because there is a greedy
algorithm that leads to an optimal solution does not
mean that all greedy solutions lead to an optimal
solution

Picking the activity with the shortest duration
can lead to a non-optimal solution



10-16: Activity Scheduling

WARNING: Just because there is a greedy
algorithm that leads to an optimal solution does not
mean that all greedy solutions lead to an optimal
solution

Picking the activity with the smallest # of
conflicts can lead to a non-optimal solution



10-17: Activity Scheduling

WARNING: Just because there is a greedy
algorithm that leads to an optimal solution does not
mean that all greedy solutions lead to an optimal
solution

Picking the activity with the smallest # of
conflicts can lead to a non-optimal solution



10-18: Greedy Algorithms

Dynamic vs. Greedy

It can sometimes be difficult to tell when a
Greedy Algorithm can be used, and when
Dynamic Programming must be used

Subtle changes in a problem can kill greedy
choice



10-19: Knapsack Problem

Thief has a knapsack (backpack) that can hold k
pounds

n elements, each of which has a value and a
weight

Add items to the backpack to maximize total value

What are some greedy solutions?

Do they produce optimal solutions?



10-20: Knapsack Problem

Pick most densely valued items first:
Knapsack holds 100 pounds

Weight Value Value / Weight

60 70 7/6

50 50 1

45 45 1

No other greedy algorithm works, either



10-21: Fractional Knapsack

Thief has a knapsack (backpack) that can hold k
pounds

n elements, each of which has a value and a
weight

Add items to the backpack to maximize total value

This time you can take a fraction of any item

Like gold dust

Is there a greedy algorithm for this problem? Can
you prove it?



10-22: 0-1 Knapsack Problem

Standard version of the knapsack problem

Can’t take fractional items

Order of elements by increasing weight = order by
decreasing value

Is there a valid greedy algorithm for this problem?



10-23: Driving Problem

Need to get across the country in a car

Gas tank holds enough gas for n miles

Have a chart with location of all gas stations on
it

Want to make as few stops as possible

How do we decide which stations to stop at?



10-24: Job Scheduling

Series of jobs to execute on a uniprocessor
machine

Each job takes a different amount of time to
complete

j1, j2, . . . , jn

Want to minimize the average wait time

Same as minimizing the total wait time (why?)

Algorithm?

Correctness Proof?



10-25: Huffman Coding

Standard encoding (ASCII)

Each letter uses the same number of bits

We’d like to use fewer bits for more common
letters, more bits for less common letters

Use less space overall for the file



10-26: Huffman Coding

If different letters use a different # of bits, how do
we determine which bits go with which letter?



10-27: Huffman Coding

If different letters use a different # of bits, how do
we determine which bits go with which letter?

Prefix Codes

No code is a prefix of any other code

Decoding is unambiguous



10-28: Huffman Coding

a b c d e f

Frequency 43K 12K 12k 16k 9k 5k

Fixed-Length 000 001 010 011 100 101

Variable-Length 0 101 100 111 1101 1100

Input Fixed-Length Variable-Length

abc 000001010 0101100

fee 101100100 1100110111011

aaba 000000001000 001010



10-29: Huffman Coding

a

c b

f e

d

0 1

0

0 0

0

1

1

1

1

abaac

11010010111000100



10-30: Huffman Coding

a

c b

f e

d

0 1

0

0 0

0

1

1

1

1

abaac⇒ 010100100

11010010111000100⇒ eaabfac



10-31: Huffman Coding

a b c d e f

Frequency 43K 12K 12k 16k 9k 5k

Fixed-Length 000 001 010 011 100 101

Variable-Length 0 101 100 111 1101 1100

Total size of file in fixed-length encoding: 300K bits

Total size of file in variable-length encoding: 224k
bits



10-32: Huffman Coding

Are fixed-length codes prefix codes?

Can we form a binary tree for fixed-length
codes?

What is the cost of a tree T for a specific file (given

the frequency f [c] of each character c in the file)?



10-33: Huffman Coding

Are fixed-length codes prefix codes?

Can we form a binary tree for fixed-length
codes?

What is the cost of a tree T for a specific file (given

the frequency f [c] of each character c in the file)?

B(T ) =
∑

c∈T

f [c] ∗ dT (c)

(dT (c) is the depth of the character c in the tree T )



10-34: Huffman Coding

Build a tree to minimize B(T ) =
∑

c∈T f [c] ∗ dT (c)

Create set of trees: one for each character in
the input file

Each tree has a single node w/ character &
frequency information

While > 1 tree in the set:
Take the two trees with the smallest
frequency, t1, t2
Create a new root, with t1 and t2 as subtrees
f [root] = f [t1] + f [t2]

Letter a b c d e f

Frequency 3 7 40 20 15 13



10-35: Huffman Coding

Do Huffman codes produce optimal trees?

Greedy Choice

Optimal Substructure



10-36: Huffman Coding

Greedy Choice

Optimal tree T

Alphabet C, f [c] = frequency of c ∈ C

x, y two characters in C with lowest frequency

a, b lowest-depth siblings in T

Swap a with x, and b with y, to get T ′



10-37: Huffman Coding

B(T )− B(T ′) =
∑

c∈T

f [c] ∗ dT (c)−
∑

c′∈T ′

f [c′]dT ′(c′)

= f [a](dT (a)− dT ′ (a)) + f [b](dT (b)− dT ′ (b))

+f [x](dT (x)− dT ′ (x)) + f [y](dT (y)− dT ′ (y))

= f [a](dT (a)− dT ′ (a)) + f [x](dT (x)− dT ′(x))

+f [b](dT (b)− dT ′(b)) + f [y](dT (y)− dT ′ (y))

= (f [a]− f [x])(dT (a)− dT ′ (a))

+(f [b]− f(y))(dT (b)− dT ′ (b))

≥ 0

B(T ′) ≤ B(T )

If T is optimal, T ′ is, too



10-38: Huffman Coding

Optimal Substructure

Let T be optimal tree

x, y sibling nodes in T , z is the parent

Consider z to be a character with frequency
f [x] + f [y]

T ′ = T − {x, y} is an optimal prefix code for

C ′ = C − {x, y} ∪ {z}

Cost B(T ) in terms of cost B(T ′):



10-39: Huffman Coding

Cost B(T ) in terms of cost B(T ′):

∀c ∈ C − {x, y}, dT (c) = dT ′(c), so

f [c]dT [c] = f [c]dT ′(c)

f [x]dT (x) + f [y]dT [y] = (f [x] + f [y])(dT ′(z) + 1)

= f [z]dT ′(z) + f [x] + f [y]

B(T ) = B(T ′) + f [x] + f [y]

So, if T ′ is not optimal, neither is T



10-40: Matroids

Matriod is a pair: M = (S, I)

S is a finite, nonempty set

I is a nonempty family of subsets of S, called
“Independent subsets” of S such that:

if B ∈ I and A ⊆ B, then A ∈ I
(Hereditary Property)
If A ∈ I and B ∈ I and |A| < |B|, there is

some element x ∈ B such that A ∪ {x} ∈ I
(Exchange Property)



10-41: Matroids

Originally, Matroids used to describe matrices

S = rows of a matrix

I = sets of linearly independent rows
Hence the name, independent subsets

Matrix matroids have both hereditary and
exchange properties



10-42: Example Matroids

S = edges of an undirected graph G

I = Subsets of S that do not form a directed cycle

(Examples on board)



10-43: Example Matroids

Undirected graphs / I = acyclic subsets

Hereditary property



10-44: Example Matroids

Undirected graphs / I = acyclic subsets

Hereditary property
Trivial
If a graph is acyclic, any subset of edges will
also be acyclic



10-45: Example Matroids

Undirected graphs / I = acyclic subsets

Exchange Property

A,B ∈ I, |A| < |B|
A is a forest of |V | − |A| trees (why?)

B is a forest of |V | − |B| trees
Must be some edge in B that spans two
different trees in A (why?)



10-46: Weighted Matroids

Weighted Matroid:

Positive weight w(x) for each element x ∈ S

Weight of any member of I is sum of weights of
elements of I

Optimal subset of S is an element of I with
maximal weight

Problem: Find an optimal subset of S

What would greedy solution look like?

Does it work?



10-47: Weighted Matroids

Greedy(M,w)
A← {}
sort S[M ] in non-increasing order by w
for each x ∈ S[M ] (in non-decreasing order)

if A ∪ {x} ∈ I[M ]
A← A ∪ {x}

return A



10-48: Weighted Matroids

To show that a greedy algorithm is correct
(produces optimal solutions) we need to show:

Greedy Choice
There exists a solution that contains the
greedy choice

Optimal Substructure
Optimal solutions are composed of optimal
solutions to subproblems



10-49: Weighted Matroids

Greedy Choice

Let {x} be independent element with largest
weight

Show that there is some maximal matroid that
contains x.

What should we do?



10-50: Weighted Matroids

Let {x} be independent element with largest
weight

Let B be a maximal matroid

If B contains x, we are done

If B does not contain x, we can create a set A:
start with A = {x}
Use exchange property to add elements to A
from b until |A| = |B|
weight(A) = weight(B) - weight(y) + weight(x)
• y is element of B not added to A
• weight(x) ≥ weight(y) (why?)



10-51: Weighted Matroids

Optimal substructure

Let x be first element chosen by Greedy from
M = (S, I)

Remaining subproblem: find maximal weight

indep. subset of M ′ = (S ′, I ′):
S ′ = {y ∈ S : {x, y} ∈ I}
I ′ = {B ⊆ S − {x} : B ∪ {x} ∈ I}



10-52: Weighted Matroids

If an optimization problem is finding a maximal
weighted matroid, then greedy will work.

Minimum Cost Spanning Tree (MST)

Undirected graph G, each edge k has a
positive weight wk

Find a spanning tree (connected, acyclic subset
of edges) that has minimum cost

Is the MST problem a maximal weighted matroid
problem?



10-53: Weighted Matroids

If an optimization problem is finding a maximal
weighted matroid, then greedy will work.

Minimum Cost Spanning Tree (MST)

Undirected graph G, each edge k has a
positive weight wk

Find a spanning tree (connected, acyclic subset
of edges) that has minimum cost

Is the MST problem a weighted matroid?

Want to find minimal total weight, not maximal

Replace each weight wk with w0 − wk, where
w0 is larger than any weight on the graph

Greedy solution will work (Kruskal’s algorithm)



10-54: Weighted Matroids

Example: Unit tasks with deadlines and penalties

Set S = {a1, a2, . . . , an} of n unit-time tasks

Set of n deadlines d1, . . . dn
Set of n non-negative penalties w1, w2, . . . , wn

Schedule all n tasks. Each task ak that is
completed after time dk incurs penalty wk.

What is the optimal schedule (smallest overall
penalty)?



10-55: Weighted Matroids

Example: Unit tasks with deadlines and penalties

Any schedule can be re-arranged so that:
All on-time tasks are scheduled before all
late tasks
On-time tasks are completed by order of
deadline

To create a schedule, decide which tasks will
be done on time, and which will be late. Then,
order early tasks by increasing deadline, and
late tasks afterwards in any order.



10-56: Weighted Matroids

Example: Unit tasks with deadlines and penalties

S = set of tasks

I = set of subsets of tasks, where all tasks in I
are early

Hereditary Property?

Exchange Property?



10-57: Weighted Matroids

Example: Unit tasks with deadlines and penalties

S = set of tasks

I = set of subsets of tasks, where all tasks in I
are early

Hereditary Property

If we can schedule all elements in I on time, we
can obviously schedule all elements of any
subset of I in time as well.



10-58: Weighted Matroids

Exchange Property

Let A and B be independent subsets, with
|B| > |A|.

NT (A) be the number of tasks in A that have a
deadline if t or earlier

Let k be the largest integer such that

Nk(B) ≤ Nk(A)
N0(B) = N0(A) = 0, so such a k must exist

Nn(B) = |B|, Nn(A) = |A|, so Nn(B) > Nn(A)

k < n, for all j in the range k + 1 . . . n,

Nj(B) > Nj(A).

B contains more tasks with deadline k + 1 than
A does

Add any task with deadline k + 1 to A from B
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