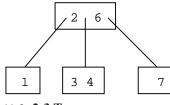
11-0: Binary Search Trees

- Binary Tree data structure
- All values in left subtree < value stored in root
- All values in the right subtree > value stored in root

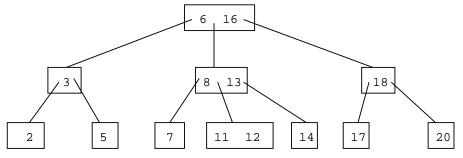
11-1: Generalizing BSTs

- Generalized Binary Search Trees
 - Each node can store several keys, instead of just one
 - Values in subtrees between values in surrounding keys
 - For non leaves, # of children = # of keys + 1



11-2: 2-3 Trees

- Generalized Binary Search Tree
 - Each node has 1 or 2 keys
 - Each (non-leaf) node has 2-3 children
 - hence the name, 2-3 Trees
 - All leaves are at the same depth



11-4: Finding in 2-3 Trees

• How can we find an element in a 2-3 tree?

11-5: Finding in 2-3 Trees

- How can we find an element in a 2-3 tree?
 - If the tree is empty, return false
 - If the element is stored at the root, return true

• Otherwise, recursively find in the appropriate subtree

11-6: Inserting into 2-3 Trees

- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf

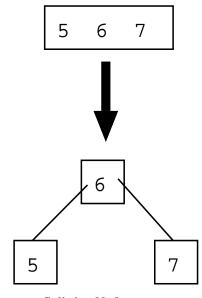
11-7: Inserting into 2-3 Trees

- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf
 - What if the leaf already has 2 elements?

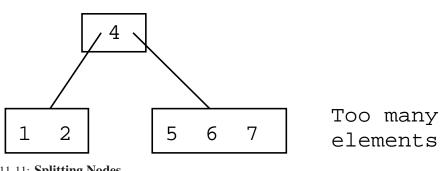
11-8: Inserting into 2-3 Trees

- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf
 - What if the leaf already has 2 elements?
 - Split!

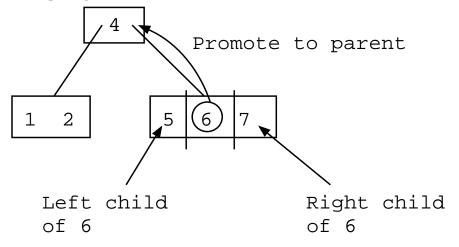
11-9: Splitting Nodes



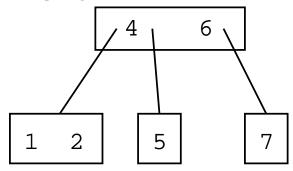
11-10: Splitting Nodes



11-11: Splitting Nodes



11-12: Splitting Nodes



11-13: Splitting Root

- When we split the root:
 - Create a new root
 - Tree grows in height by 1

11-14: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

11-15: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

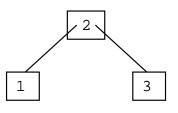
11-16: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

Too many keys, need to split

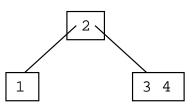
11-17: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



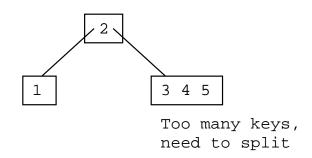
11-18: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



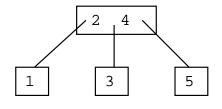
11-19: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



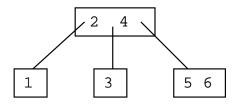
11-20: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



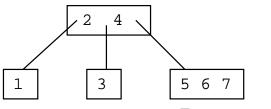
11-21: **2-3 Tree Example**

• Inserting elements 1-9 (in order) into a 2-3 tree



11-22: 2-3 Tree Example

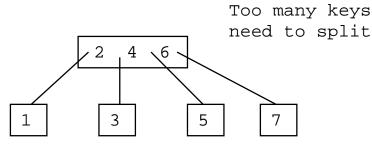
• Inserting elements 1-9 (in order) into a 2-3 tree



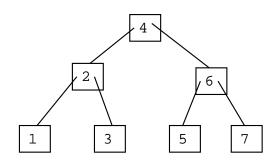
Too many keys need to split

11-23: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

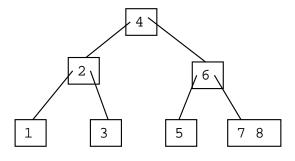


• Inserting elements 1-9 (in order) into a 2-3 tree



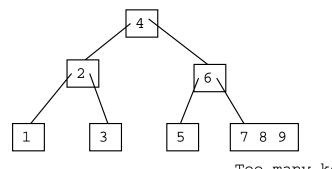
11-25: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



11-26: 2-3 Tree Example

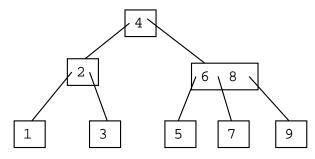
• Inserting elements 1-9 (in order) into a 2-3 tree



Too many keys need to split

11-27: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree



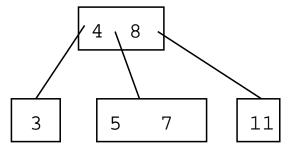
11-28: Deleting from 2-3 Tree

- As with BSTs, we will have 2 cases:
 - Deleting a key from a leaf
 - Deleting a key from an internal node

11-29: Deleting Leaves

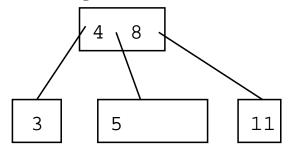
- If leaf contains 2 keys
 - Can safely remove a key

11-30: Deleting Leaves



• Deleting 7

11-31: Deleting Leaves

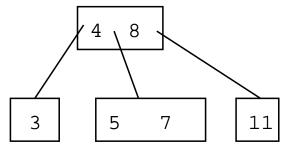


• Deleting 7

11-32: Deleting Leaves

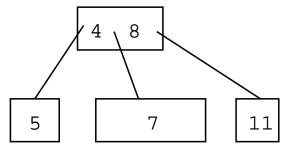
- If leaf contains 1 key
 - Cannot remove key without making leaf empty
 - Try to steal extra key from sibling

11-33: Deleting Leaves



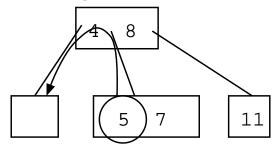
• Deleting 3 – we can steal the 5

11-34: Deleting Leaves

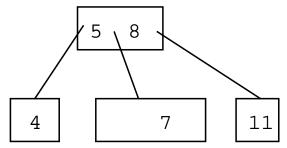


• Not a 2-3 tree. What can we do?

11-35: Deleting Leaves



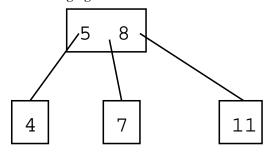
- Steal key from sibling *through parent*
- 11-36: Deleting Leaves



• Steal key from sibling through parent

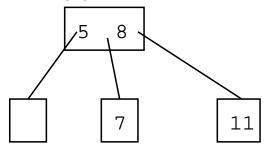
11-37: Deleting Leaves

- If leaf contains 1 key, and no sibling contains extra keys
 - Cannot remove key without making leaf empty
 - Cannot steal a key from a sibling
 - Merge with sibling
 - split in reverse



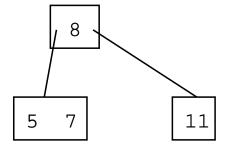
• Removing the 4

11-39: Merging Nodes



- Removing the 4
- Combine 5, 7 into one node

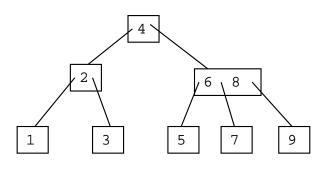
11-40: Merging Nodes



11-41: Merging Nodes

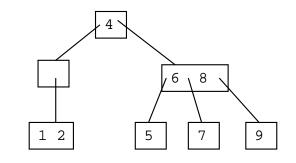
- Merge decreases the number of keys in the parent
 - May cause parent to have too few keys
- Parent can steal a key, or merge again

11-42: Merging Nodes



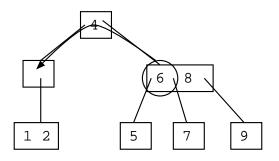
• Deleting the 3 – cause a merge

11-43: Merging Nodes



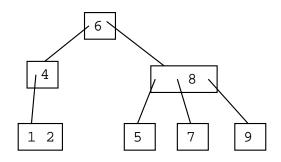
- Deleting the 3 cause a merge
- Not enough keys in parent

11-44: Merging Nodes



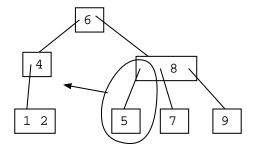
• Steal key from sibling

11-45: Merging Nodes



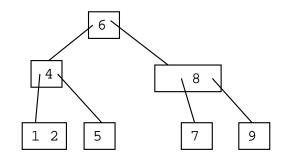
• Steal key from sibling

11-46: Merging Nodes



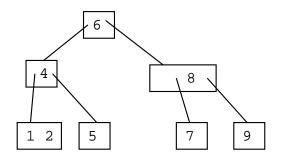
• When we steal a key from an internal node, steal nearest subtree as well

11-47: Merging Nodes



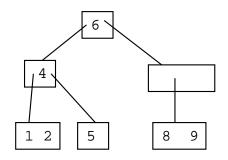
• When we steal a key from an internal node, steal nearest subtree as well

11-48: Merging Nodes



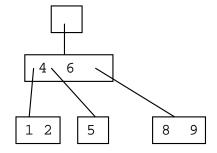
• Deleting the 7 – cause a merge

11-49: Merging Nodes



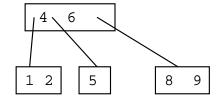
• Parent has too few keys - merge again

11-50: Merging Nodes



• Root has no keys – delete

11-51: Merging Nodes



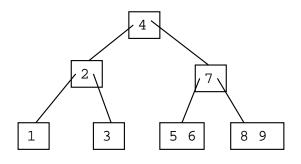
11-52: Deleting Interior Keys

- How can we delete keys from non-leaf nodes?
 - *HINT:* How did we delete non-leaf nodes in standard BSTs?

11-53: Deleting Interior Keys

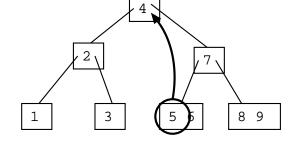
- How can we delete keys from non-leaf nodes?
 - Replace key with smallest element subtree to right of key
 - Recursivly delete smallest element from subtree to right of key
- (can also use largest element in subtree to left of key)

11-54: Deleting Interior Keys

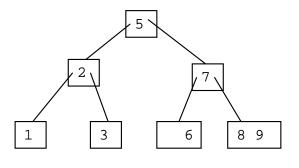


• Deleting the 4

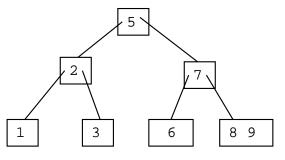
11-55: Deleting Interior Keys



- Deleting the 4
- Replace 4 with smallest element in tree to right of 4
- 11-56: Deleting Interior Keys

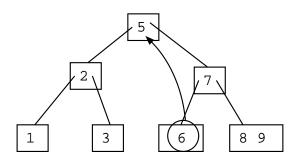


11-57: Deleting Interior Keys



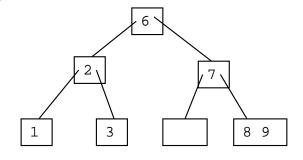
• Deleting the 5

11-58: Deleting Interior Keys



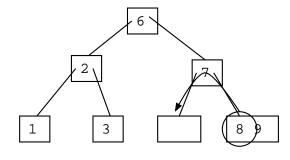
- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5

11-59: Deleting Interior Keys

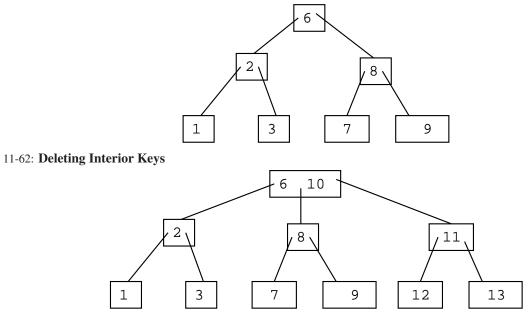


- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5
- Node with two few keys

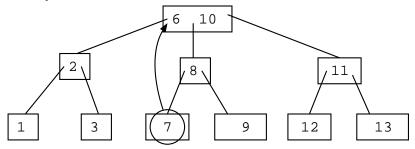
11-60: Deleting Interior Keys



- Node with two few keys
- Steal a key from a sibling
- 11-61: Deleting Interior Keys

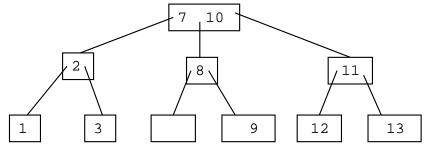


- Removing the 6
- 11-63: Deleting Interior Keys



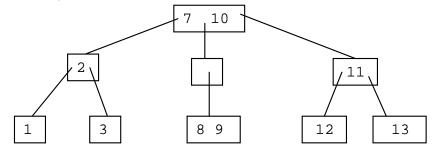
- Removing the 6
- Replace the 6 with the smallest element in the tree to the right of the 6

11-64: Deleting Interior Keys



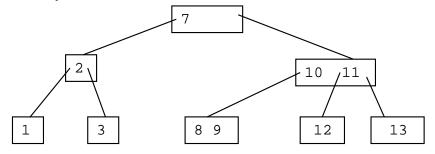
- Node with too few keys
 - Can't steal key from sibling
 - Merge with sibling

11-65: Deleting Interior Keys



- Node with too few keys
 - Can't steal key from sibling
 - Merge with sibling
 - (arbitrarily pick right sibling to merge with)

11-66: Deleting Interior Keys



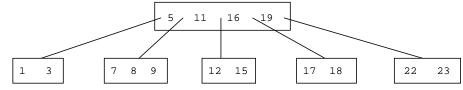
11-67: Generalizing 2-3 Trees

- In 2-3 Trees:
 - Each node has 1 or 2 keys
 - Each interior node has 2 or 3 children
- We can generalize 2-3 trees to allow more keys / node

11-68: **B-Trees**

- A B-Tree of maximum degree k:
 - All interior nodes have $\lceil k/2 \rceil \dots k$ children
 - All nodes have $\lceil k/2 \rceil 1 \dots k 1$ keys
- 2-3 Tree is a B-Tree of maximum degree 3

11-69: **B-Trees**

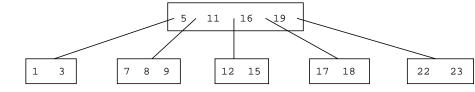


- B-Tree with maximum degree 5
 - Interior nodes have 3 5 children
 - All nodes have 2-4 keys

11-70: **B-Trees**

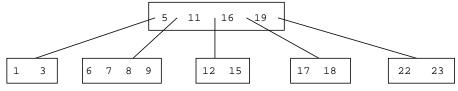
- Inserting into a B-Tree
 - Find the leaf where the element would go
 - If the leaf is not full, insert the element into the leaf
 - Otherwise, split the leaf (which may cause further splits up the tree), and insert the element

11-71: **B-Trees**

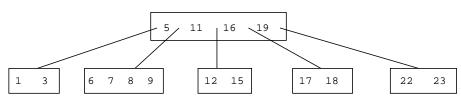


• Inserting a 6 ..

11-72: **B-Trees**

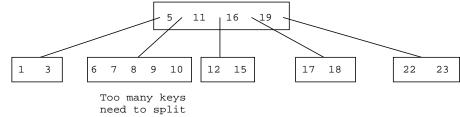


11-73: **B-Trees**



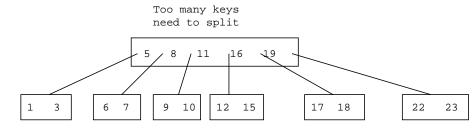
• Inserting a 10 ..

11-74: **B-Trees**



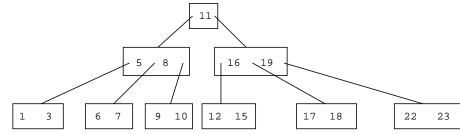
- Promote 8 to parent (between 5 and 11)
- Make nodes out of (6, 7) and (9, 10)

11-75: **B-Trees**



- Promote 11 to parent (new root)
- Make nodes out of (5, 8) and (6, 19)

11-76: **B-Trees**



- Note that the root only has 1 key, 2 children
- All nodes in B-Trees with maximum degree 5 should have at least 2 keys
- The root is an exception it may have as few as one key and two children for any maximum degree

11-77: **B-Trees**

- B-Tree of maximum degree k
 - Generalized BST
 - All leaves are at the same depth
 - All nodes (other than the root) have $\lfloor k/2 \rfloor 1 \dots k 1$ keys
 - All interior nodes (other than the root) have $\lceil k/2 \rceil \dots k$ children

11-78: **B-Trees**

- B-Tree of maximum degree k
 - Generalized BST
 - All leaves are at the same depth
 - All nodes (other than the root) have $\lceil k/2 \rceil 1 \dots k 1$ keys
 - All interior nodes (other than the root) have $\lceil k/2 \rceil \dots k$ children
- Why do we need to make exceptions for the root?

11-79: **B-Trees**

- Why do we need to make exceptions for the root?
 - Consider a B-Tree of maximum degree 5 with only one element

11-80: **B-Trees**

- Why do we need to make exceptions for the root?
 - Consider a B-Tree of maximum degree 5 with only one element
 - Consider a B-Tree of maximum degree 5 with 5 elements

11-81: B-Trees

• Why do we need to make exceptions for the root?

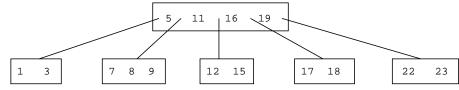
- Consider a B-Tree of maximum degree 5 with only one element
- Consider a B-Tree of maximum degree 5 with 5 elements
- Even when a B-Tree *could* be created for a specific number of elements, creating an exception for the root allows our split/merge algorithm to work correctly.

19

11-82: **B-Trees**

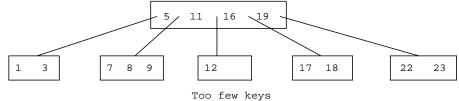
- Deleting from a B-Tree (Key is in a leaf)
 - Remove key from leaf
 - Steal / Split as necessary
 - May need to split up tree as far as root

11-83: **B-Trees**

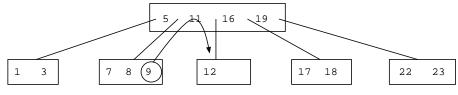


• Deleting the 15

11-84: **B-Trees**

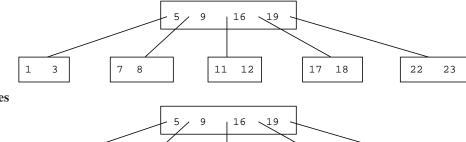


11-85: **B-Trees**



• Steal a key from sibling

11-86: **B-Trees**



11 12

17

18

22

23

7 8

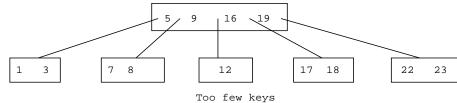
3

1

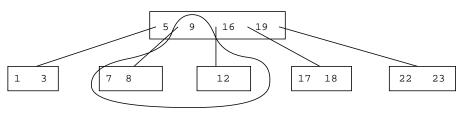
11-87: **B-Trees**

• Delete the 11

11-88: **B-Trees**

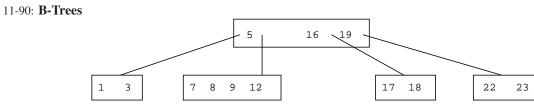


11-89: **B-Trees**



Combine into 1 node

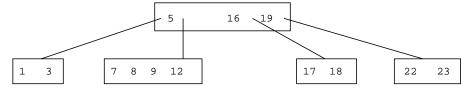
• Merge with a sibling (pick the left sibling arbitrarily)



11-91: **B-Trees**

- Deleting from a B-Tree (Key in internal node)
 - Replace key with largest key in right subtree
 - Remove largest key from right subtree
 - (May force steal / merge)

11-92: **B-Trees**



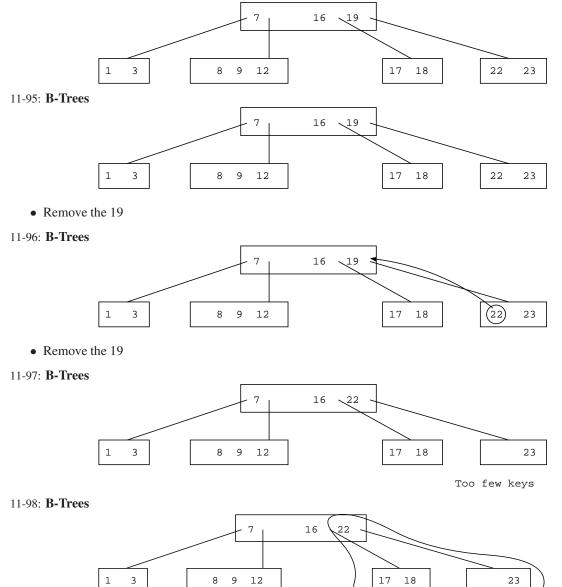
• Remove the 5

11-93: **B-Trees**



B-Trees

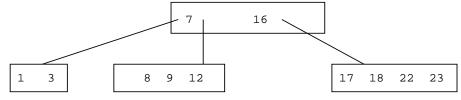
- Remove the 5
- 11-94: **B-Trees**



• Merge with left sibling

1

11-99: **B-Trees**



11-100: **B-Trees**

- Almost all databases that are large enough to require storage on disk use B-Trees
- Disk accesses are very slow
 - Accessing a byte from disk is 10,000 100,000 times as slow as accessing from main memory
 - Recently, this gap has been getting even bigger
- Compared to disk accesses, all other operations are essentially free
- Most efficient algorithm minimizes disk accesses as much as possible

11-101: **B-Trees**

- Disk accesses are slow want to minimize them
- Single disk read will read an entire sector of the disk
- Pick a maximum degree k such that a node of the B-Tree takes up exactly one disk block
 - Typically on the order of 100 children / node

11-102: B-Trees

- With a maximum degree around 100, B-Trees are very shallow
- Very few disk reads are required to access any piece of data
- Can improve matters even more by keeping the first few levels of the tree in main memory
 - For large databases, we can't store the entire tree in main memory but we can limit the number of disk accesses for each operation to be very small

11-103: **B-Trees**

- If the maximum degree of a B-Tree is odd (2-3 tree, 3-4-5 tree), then we can only split a node when it gets "over-full"
 - Examples for 2-3 trees on board
- If the maximum degree of a B-Tree is even (2-3-4 tree, 3-4-5-6, etc.):
 - We can split a node before it is "over-full"
 - We can merge nodes before they are "under-full"

11-104: **B-Trees**

- Preemptive Splitting
 - If the maximum degree is even, we can implement an insert with a single pass down the tree (instead of a pass down, and then a pass up to clean up)
 - When inserting into any subtree tree, if the root of that tree is full, split the root before inserting
 - Every time we want to do a split, we know our parent is not full.

(examples, use visualization) 11-105: B-Trees

• Preemptive Combining – Deleting from Leaves

- If the maximum degree is even, we can implement a delete with a single pass down the tree (instead of a pass down, and then a pass up to clean up)
- When deleting from any node (other than the root), combine / steal as necessary so that the node has more then the minimum # of keys
- When you get to a leaf, you are guaranteed that there will be an extra key in the leaf

(examples, deleting from leaves)

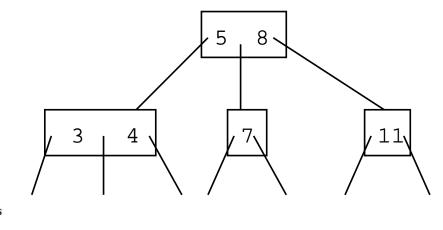
11-106: **B-Trees**

- Preemptive Combining
 - Deleting k from a non-leaf:
 - If the subtree left of k has > minimum number of elements, replace k with largest element in the left subtree, splitting as you go down
 - If the subtree right of k has > minimum number of elements, replace k with smallest element in the right subtree, splitting as you go down

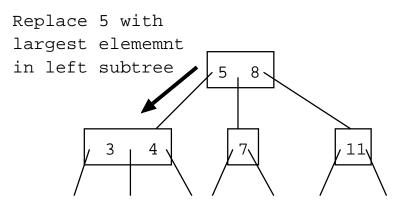
(examples)

11-107: B-Trees

Deleting 5:

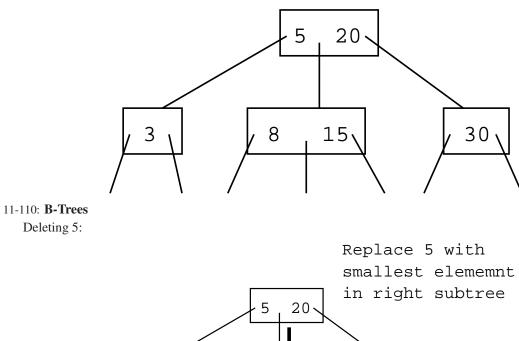


11-108: **B-Trees** Deleting 5:



11-109: **B-Trees**

Deleting 5:



8

15

- Preemptive Combining
 - Deleting k from a non-leaf:

3

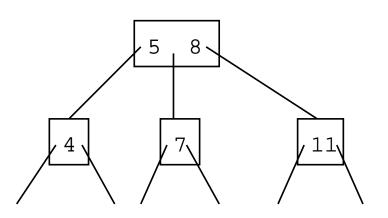
• If the subtrees to the left & right of k subtrees both have the minimum # of elements, combine around k

30

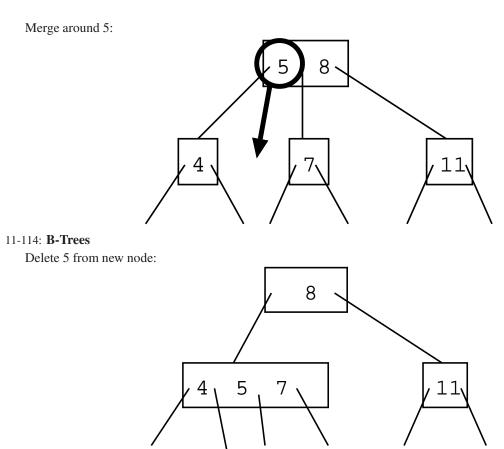
• Recursively remove k from this new node

11-112: B-Trees

Deleting 5:



11-113: **B-Trees**



11-115: **B-Trees**

- Preemptive Combining
 - Deleting k from a non-leaf:
 - If the subtrees to the left & right of k subtrees both have the minimum # of elements, combine around k
 - Recursively remove k from this new node
- Why do we need this case? Why can't we just replace key with largest value in left subtree, or smallest value in right subtree?

11-116: **B-Trees**

- Preemptive Combining
 - Deleting k from a non-leaf:
 - If the subtrees to the left & right of k subtrees both have the minimum # of elements, combine around k
 - Recursively remove k from this new node
- Why do we need this case? Why can't we just replace key with largest value in left subtree?
 - Immediately cause a merge, anyway
 - Harder to determine which location to copy largest element into

11-117: **B-Trees**

- Preemptive split/merge vs. "standard" split/merge
 - Advantages of the "standard" method?
 - Advantages of the "preemptive" method?
- Textbook uses "preemptive" method