
Graduate Algorithms
CS673-2016F-13

Binomial Heaps & Fibonacci Heaps

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

13-0: Binomial Trees

B0 is a tree containing a single node

To build Bk:

Start with Bk−1

Add Bk−1 as left subtree

13-1: Binomial Trees

B 0 B 1 B 2 B 3 B 4

13-2: Binomial Trees

B 0 B 1 B 2 B 3 B 4

13-3: Binomial Trees

Equivalent defintion

B0 is a binomial heap with a single node

Bk is a binomial heap with k children:
B0 . . . Bk−1

13-4: Binomial Trees

B 0 B 1 B 2 B 3 B 4

13-5: Binomial Trees

B 0 B 1 B 2 B 3 B 4

13-6: Binomial Trees

Properties of binomial trees Bk

Contains 2k nodes

Has height k

Contains
(

k

i

)

nodes at depth i for i = 0 . . . k

13-7: Binomial Trees

Bk contains
(

k

i

)

nodes at depth i

D(k, i) # of nodes at depth i in Bk

D(k, i) = D(k − 1, i) +D(k − 1, i− 1) (why?)

D(k, i) = D(k − 1, i) +D(k − 1, i− 1)

=

(

k − 1

i

)

+

(

k − 1

i− 1

)

=

(

k

i

)

13-8: Binomial Heaps

A Binomial Heap is:

Set of binomial trees, each of which has the
heap property

Each node in every tree is <= all of its
children

All trees in the set have a different root degree
Can’t have two B3’s, for instance

13-9: Binomial Heaps

10 5

722

25

12

1513

17

8

159

20

13-10: Binomial Heaps

Representing Binomial Heaps

Each node contains:
left child, right sibling, parent pointers
degreee (is the tree rooted at this node B0,
B1, etc.)
data

Each list of children sorted by degree

13-11: Binomial Heaps

10

0

5

2

7

0

22

1

25

0

8

3

15

0

9

1

20

0

12

2

15

1

13

1

17

0

Head

13-12: Binomial Heaps

How can we find the minimum element in a
binomial heap?

How long does it take?

13-13: Binomial Heaps

How can we find the minimum element in a
binomial heap?

Look at the root of each tree in the list, find
smallest value

How long does it take?

Heap has n elements

Represent n as a binary number

Bk is in heap iff kth binary digit of n is 1

Number of trees in heap ∈ O(lg n)

13-14: Binomial Heaps

Merging Heaps H1 and H2

Merge root lists of H1 and H2

What property of binomial heaps may be
broken?

How do we fix it?

13-15: Binomial Heaps

Merging Heaps H1 and H2

Merge root lists of H1 and H2

Could now have two trees with same degree

Go through list from smallest degree to largest
degree

If two trees have same degree, combine
them into one tree of larger degree
If three trees have same degree (how can
this happen?) leave one, combine other two
into tree of larger degree

13-16: Binomial Heaps

10 5

722

25

12

1513

17

8

159

20

11 3

614

30

13-17: Binomial Heaps

10 5

722

25

12

1513

17

8

159

20

11 3

614

30

13-18: Binomial Heaps

10 5

722

25

12

1513

17

8

159

20

11

3

614

30

13-19: Binomial Heaps

10

5

722

25

12

1513

17

8

159

20

11

3

614

30

13-20: Binomial Heaps

10

5

722

25

12

1513

17

8

159

20

11

3

614

30

13-21: Binomial Heaps

Removing minimum element

How can we remove the minimum element

HINT: Be lazy – use operations that we
already have

13-22: Binomial Heaps

Removing minimum element

Find tree T that has minimum value at root,
remove T from the list

Remove the root of T
Leaving a list of smaller trees

Reverse list of smaller trees

Merge two lists of trees together

13-23: Binomial Heaps

Removing minimum element

10

5

722

25

12

1513

17

8

159

20

11

3

614

30

13-24: Binomial Heaps

Removing minimum element

10

5

722

25

12

1513

17

8

159

20

11 614

30

13-25: Binomial Heaps

Removing minimum element

10 5

722

25

12

1513

17

8

159

20

11

6 14

30

13-26: Binomial Heaps

Removing minimum element

10 5

722

25

12

1513

17

8

159

20

11

6 14

30

13-27: Binomial Heaps

Removing minimum element

10 5

722

25

12

1513

17

8

159

20

11

6

14

30

13-28: Binomial Heaps

Removing minimum element

10

5

722

25

12

1513

17

8

159

2011

6

14

30

13-29: Binomial Heaps

Removing minimum element

10

5

722

2512

1513

17

8

159

20

11

6

14

30

13-30: Binomial Heaps

Removing minimum element

Time?

13-31: Binomial Heaps

Removing minimum element

Time?
Find the smallest element:
Reverse list of children
Merge heaps

13-32: Binomial Heaps

Removing minimum element

Time?
Find the smallest element: O(lg n)
Reverse list of children O(lg n)
Merge heaps O(lg n)

13-33: Binomial Heaps

Decreasing the key of an element (assuming you
have a pointer to it)

10 5

722

25

12

1513

17

8

159

20
Decrease

this key

13-34: Binomial Heaps

Decreasing the key of an element (assuming you
have a pointer to it)

Decrease key value

While value < parent, swap with parent
Exactly like standard, binary heaps

Time: O(lg n)

13-35: Binomial Heaps

How could we delete an arbitrary element
(assuming we had a pointer to this element)?

10 5

722

25

12

1513

17

8

159

20

Delete

this key

13-36: Binomial Heaps

How could we delete an arbitrary element
(assuming we had a pointer to this element)?

Decrease key to −∞, Time O(lg n)

Remove smallest, Time O(lg n)

13-37: Fibonacci Heaps

A Fibonacci Heap, like a Binomial Heap, is a
collection of min-heap ordered trees

No restriction on the # of trees of the same size

(We’ll relax some of the other restrictions later
...)

Maintain a pointer to tree with smallest root

13-38: Fibonacci Heaps

10 5

7

7

8

20

6

13

11

15 21

28

13-39: Fibonacci Heaps

Implementation

Each node has pointer to parent

Children are stored in circular linked list
No ordering among the children

Maintain a pointer to the tree with the smallest
root

13-40: Fibonacci Heaps

10 5

7

7

8

20

6

13

11

15 21

28

13-41: Fibonacci Heaps

We will use amortized analysis, using the potential
method, to analyze Fibonacci heaps

Φ = c ∗ t(H)

t(H) = # of trees in the heap

(We will modify this Φ in a bit ...)

13-42: Fibonacci Heaps -Min

Finding the minimum element

13-43: Fibonacci Heaps - Min

Finding the minimum element

Look at the element pointed to by minimum
pointer

Potential not changed

Takes time O(1)

13-44: Fibonacci Heaps - Merge

Merging two heaps H1 and H2

Combine their root lists into one list
Takes a constant # of pointer changes
(example on board)

Set minimum pointer

Change in potential:

Φ(H)− (Φ(H1) + Φ(H2)) = t(H)− (t(H1) + t(H2))

= 0

13-45: Fibonacci Heaps - Delete Min

To delete the minimum node:

Remove smallest node

Add its children to root list

Consolidate root list
Link together nodes of the same degree until
there is at most one node of each degree
Make it back into a Binomial Heap
Common practice when you only care about
amortized running time – put off work, and do
it all at once

13-46: Fibonacci Heaps - Delete Min

Consolidate
Create an array A[], initially empty

// Eventually, A[i] will hold tree of degree i
For each node w in the root list

x← w
d←degree(x)
while A[d]! =nil do

y ← A[d]
x← link(x, y)
A[d]← nil
d← d+ 1

A[d]← x
Link elements of A together as new root list
Recalculate min

13-47: Fibonacci Heaps - Delete Min

Amortized cost to remove min:

am(crem−min) = crem−min + Φ(Hnew)− Φ(Hold)

= (C1 ∗ t+ c2 ∗max_deg) + c ∗max_deg − c ∗ t

∈ O(max_deg)

max_deg ∈ O(lg n)

am(crem−min) ∈ O(lg n)

13-48: Fib. Heaps - Decrease Key

Like to implement decrease key in amortized time
O(1)

Add a new “Mark” field to each node in the tree
Mark is true if node has lost a child since
parent pointer changed

New Potential function
Φ(H) = t(H) + 2 ∗m(H)

(extra constant c left out for clarity)

13-49: Fib. Heaps - Decrease Key

With new potential function, merge and find still

have amortized running time O(1), and
remove-min still has amortized running time

O(lg n)

Since none of those operations increase m(H)

We can use the marks to make decrease-key work
in time O(1)

13-50: Fib. Heaps - Decrease Key

Decreasing a key can break the heap property

Cut: Move Decreased node to root list

Now the heap property still holds

Cascading cut:

If parent is not marked, mark parent

If parent is marked, cut parent, Cascading cut
parent

Examples (on board)

13-51: Fib. Heaps - Decrease Key

Amortized cost for Decrease Key:

Actual Cost + Change in potential

Actual Cost:
O(1) to move element to root list
of cascading cuts c

Change in Potential
of added trees - 2 * # of nodes unmarked
4 - c

Amortized cost: O(1) + c+ 4− c ∈ O(1)

13-52: Fib. Heaps - Decrease Key

Fibonacci heaps are no longer binomial heaps

Analysis of Extract-min used the fact that they are
binomial heaps to show that maximum degree of

any node ∈ O(lg n)

Even with cuts/cascading cuts, maximum degree

of any node is still ∈ O(lg n)

See textbook, section 20.4 for details

Previous analysis still correct

	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binomial Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heaps -Minaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heaps - Minaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heaps - Mergeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heaps - Delete Minaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heaps - Delete Minaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fibonacci Heaps - Delete Minaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fib. Heaps - Decrease Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fib. Heaps - Decrease Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fib. Heaps - Decrease Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fib. Heaps - Decrease Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fib. Heaps - Decrease Keyaddtocounter {blocknumber}{1}

