
CS673-2016F-13 Binomial Heaps & Fibonacci Heaps 1

13-0: Binomial Trees

• B0 is a tree containing a single node

• To build Bk:

• Start with Bk−1

• Add Bk−1 as left subtree

13-1: Binomial Trees

B 0 B 1 B 2 B 3 B 4

13-2: Binomial Trees

B 0 B 1 B 2 B 3 B 4

13-3: Binomial Trees

• Equivalent defintion

• B0 is a binomial heap with a single node

• Bk is a binomial heap with k children:

• B0 . . . Bk−1

13-4: Binomial Trees

B 0 B 1 B 2 B 3 B 4



CS673-2016F-13 Binomial Heaps & Fibonacci Heaps 2

13-5: Binomial Trees

B 0 B 1 B 2 B 3 B 4

13-6: Binomial Trees

• Properties of binomial trees Bk

• Contains 2k nodes

• Has height k

• Contains
(

k

i

)

nodes at depth i for i = 0 . . . k

13-7: Binomial Trees

• Bk contains
(

k

i

)

nodes at depth i

• D(k, i) # of nodes at depth i in Bk

• D(k, i) = D(k − 1, i) +D(k − 1, i− 1) (why?)

D(k, i) = D(k − 1, i) +D(k − 1, i− 1)

=

(

k − 1

i

)

+

(

k − 1

i− 1

)

=

(

k

i

)

13-8: Binomial Heaps

• A Binomial Heap is:

• Set of binomial trees, each of which has the heap property

• Each node in every tree is <= all of its children

• All trees in the set have a different root degree

• Can’t have two B3’s, for instance

13-9: Binomial Heaps



CS673-2016F-13 Binomial Heaps & Fibonacci Heaps 3

10 5

722

25

12

1513

17

8

159

20

13-10: Binomial Heaps

• Representing Binomial Heaps

• Each node contains:

• left child, right sibling, parent pointers

• degreee (is the tree rooted at this node B0, B1, etc.)

• data

• Each list of children sorted by degree

13-11: Binomial Heaps

10

0

5

2

7

0

22

1

25

0

8

3

15

0

9

1

20

0

12

2

15

1

13

1

17

0

Head

13-12: Binomial Heaps

• How can we find the minimum element in a binomial heap?

• How long does it take?



CS673-2016F-13 Binomial Heaps & Fibonacci Heaps 4

13-13: Binomial Heaps

• How can we find the minimum element in a binomial heap?

• Look at the root of each tree in the list, find smallest value

• How long does it take?

• Heap has n elements

• Represent n as a binary number

• Bk is in heap iff kth binary digit of n is 1

• Number of trees in heap ∈ O(lg n)

13-14: Binomial Heaps

• Merging Heaps H1 and H2

• Merge root lists of H1 and H2

• What property of binomial heaps may be broken?

• How do we fix it?

13-15: Binomial Heaps

• Merging Heaps H1 and H2

• Merge root lists of H1 and H2

• Could now have two trees with same degree

• Go through list from smallest degree to largest degree

• If two trees have same degree, combine them into one tree of larger degree

• If three trees have same degree (how can this happen?) leave one, combine other two into tree of

larger degree

13-16: Binomial Heaps

10 5

722

25

12

1513

17

8

159

20

11 3

614

30

13-17: Binomial Heaps



CS673-2016F-13 Binomial Heaps & Fibonacci Heaps 5

10 5

722

25

12

1513

17

8

159

20

11 3

614

30

13-18: Binomial Heaps

10 5

722

25

12

1513

17

8

159

20

11

3

614

30

13-19: Binomial Heaps

10

5

722

25

12

1513

17

8

159

20

11

3

614

30

13-20: Binomial Heaps



CS673-2016F-13 Binomial Heaps & Fibonacci Heaps 6

10

5

722

25

12

1513

17

8

159

20

11

3

614

30

13-21: Binomial Heaps

• Removing minimum element

• How can we remove the minimum element

• HINT: Be lazy – use operations that we already have

13-22: Binomial Heaps

• Removing minimum element

• Find tree T that has minimum value at root, remove T from the list

• Remove the root of T

• Leaving a list of smaller trees

• Reverse list of smaller trees

• Merge two lists of trees together

13-23: Binomial Heaps

• Removing minimum element

10

5

722

25

12

1513

17

8

159

20

11

3

614

30



CS673-2016F-13 Binomial Heaps & Fibonacci Heaps 7

13-24: Binomial Heaps

• Removing minimum element

10

5

722

25

12

1513

17

8

159

20

11 614

30

13-25: Binomial Heaps

• Removing minimum element

10 5

722

25

12

1513

17

8

159

20

11

6 14

30

13-26: Binomial Heaps

• Removing minimum element



CS673-2016F-13 Binomial Heaps & Fibonacci Heaps 8

10 5

722

25

12

1513

17

8

159

20

11

6 14

30

13-27: Binomial Heaps

• Removing minimum element

10 5

722

25

12

1513

17

8

159

20

11

6

14

30

13-28: Binomial Heaps

• Removing minimum element

10

5

722

25

12

1513

17

8

159

2011

6

14

30



CS673-2016F-13 Binomial Heaps & Fibonacci Heaps 9

13-29: Binomial Heaps

• Removing minimum element

10

5

722

2512

1513

17

8

159

20

11

6

14

30

13-30: Binomial Heaps

• Removing minimum element

• Time?

13-31: Binomial Heaps

• Removing minimum element

• Time?

• Find the smallest element:

• Reverse list of children

• Merge heaps

13-32: Binomial Heaps

• Removing minimum element

• Time?

• Find the smallest element: O(lg n)

• Reverse list of children O(lg n)

• Merge heaps O(lg n)

13-33: Binomial Heaps

• Decreasing the key of an element (assuming you have a pointer to it)



CS673-2016F-13 Binomial Heaps & Fibonacci Heaps 10

10 5

722

25

12

1513

17

8

159

20
Decrease 

this key

13-34: Binomial Heaps

• Decreasing the key of an element (assuming you have a pointer to it)

• Decrease key value

• While value < parent, swap with parent

• Exactly like standard, binary heaps

• Time: O(lg n)

13-35: Binomial Heaps

• How could we delete an arbitrary element (assuming we had a pointer to this element)?

10 5

722

25

12

1513

17

8

159

20

Delete

this key

13-36: Binomial Heaps

• How could we delete an arbitrary element (assuming we had a pointer to this element)?

• Decrease key to −∞, Time O(lg n)

• Remove smallest, Time O(lg n)

13-37: Fibonacci Heaps

• A Fibonacci Heap, like a Binomial Heap, is a collection of min-heap ordered trees

• No restriction on the # of trees of the same size

• (We’ll relax some of the other restrictions later ...)



CS673-2016F-13 Binomial Heaps & Fibonacci Heaps 11

• Maintain a pointer to tree with smallest root

13-38: Fibonacci Heaps

10 5

7

7

8

20

6

13

11

15 21

28

13-39: Fibonacci Heaps

• Implementation

• Each node has pointer to parent

• Children are stored in circular linked list

• No ordering among the children

• Maintain a pointer to the tree with the smallest root

13-40: Fibonacci Heaps

10 5

7

7

8

20

6

13

11

15 21

28

13-41: Fibonacci Heaps

• We will use amortized analysis, using the potential method, to analyze Fibonacci heaps

• Φ = c ∗ t(H)

• t(H) = # of trees in the heap

• (We will modify this Φ in a bit ...)

13-42: Fibonacci Heaps -Min



CS673-2016F-13 Binomial Heaps & Fibonacci Heaps 12

• Finding the minimum element

13-43: Fibonacci Heaps - Min

• Finding the minimum element

• Look at the element pointed to by minimum pointer

• Potential not changed

• Takes time O(1)

13-44: Fibonacci Heaps - Merge

• Merging two heaps H1 and H2

• Combine their root lists into one list

• Takes a constant # of pointer changes (example on board)

• Set minimum pointer

• Change in potential:

Φ(H)− (Φ(H1) + Φ(H2)) = t(H)− (t(H1) + t(H2))

= 0

13-45: Fibonacci Heaps - Delete Min

• To delete the minimum node:

• Remove smallest node

• Add its children to root list

• Consolidate root list

• Link together nodes of the same degree until there is at most one node of each degree

• Make it back into a Binomial Heap

• Common practice when you only care about amortized running time – put off work, and do it all at

once

13-46: Fibonacci Heaps - Delete Min

Consolidate

Create an array A[], initially empty

// Eventually, A[i] will hold tree of degree i

For each node w in the root list

x← w

d←degree(x)

while A[d]! =nil do

y ← A[d]
x← link(x, y)

A[d]← nil

d← d+ 1
A[d]← x

Link elements of A together as new root list

Recalculate min



CS673-2016F-13 Binomial Heaps & Fibonacci Heaps 13

13-47: Fibonacci Heaps - Delete Min

• Amortized cost to remove min:

am(crem−min) = crem−min + Φ(Hnew)− Φ(Hold)

= (C1 ∗ t+ c2 ∗max deg) + c ∗max deg − c ∗ t

∈ O(max deg)

• max deg ∈ O(lg n)

• am(crem−min) ∈ O(lg n)

13-48: Fib. Heaps - Decrease Key

• Like to implement decrease key in amortized time O(1)

• Add a new “Mark” field to each node in the tree

• Mark is true if node has lost a child since parent pointer changed

• New Potential function Φ(H) = t(H) + 2 ∗m(H)

• (extra constant c left out for clarity)

13-49: Fib. Heaps - Decrease Key

• With new potential function, merge and find still have amortized running time O(1), and remove-min still has

amortized running time O(lg n)

• Since none of those operations increase m(H)

• We can use the marks to make decrease-key work in time O(1)

13-50: Fib. Heaps - Decrease Key

• Decreasing a key can break the heap property

• Cut: Move Decreased node to root list

• Now the heap property still holds

• Cascading cut:

• If parent is not marked, mark parent

• If parent is marked, cut parent, Cascading cut parent

• Examples (on board)

13-51: Fib. Heaps - Decrease Key

• Amortized cost for Decrease Key:

• Actual Cost + Change in potential

• Actual Cost:

• O(1) to move element to root list

• # of cascading cuts c



CS673-2016F-13 Binomial Heaps & Fibonacci Heaps 14

• Change in Potential

• # of added trees - 2 * # of nodes unmarked

• 4 - c

• Amortized cost: O(1) + c+ 4− c ∈ O(1)

13-52: Fib. Heaps - Decrease Key

• Fibonacci heaps are no longer binomial heaps

• Analysis of Extract-min used the fact that they are binomial heaps to show that maximum degree of any node

∈ O(lg n)

• Even with cuts/cascading cuts, maximum degree of any node is still ∈ O(lg n)

• See textbook, section 20.4 for details

• Previous analysis still correct


