13-0: Binomial Trees

- B_0 is a tree containing a single node
- To build B_k :
 - Start with B_{k-1}
 - Add B_{k-1} as left subtree

13-1: Binomial Trees

13-2: Binomial Trees

13-3: Binomial Trees

- Equivalent defintion
 - B_0 is a binomial heap with a single node
 - B_k is a binomial heap with k children:
 - $B_0 \ldots B_{k-1}$

13-4: Binomial Trees

13-5: Binomial Trees

13-6: Binomial Trees

- Properties of binomial trees B_k
 - Contains 2^k nodes
 - Has height k
 - Contains $\binom{k}{i}$ nodes at depth *i* for $i = 0 \dots k$

13-7: Binomial Trees

- B_k contains $\binom{k}{i}$ nodes at depth i
 - D(k,i) # of nodes at depth i in B_k
 - D(k,i) = D(k-1,i) + D(k-1,i-1) (why?)

$$D(k,i) = D(k-1,i) + D(k-1,i-1)$$
$$= {\binom{k-1}{i}} + {\binom{k-1}{i-1}}$$
$$= {\binom{k}{i}}$$

13-8: Binomial Heaps

- A Binomial Heap is:
 - Set of binomial trees, each of which has the heap property
 - Each node in every tree is <= all of its children
 - All trees in the set have a different root degree
 - Can't have two B_3 's, for instance

13-9: Binomial Heaps

13-10: Binomial Heaps

- Representing Binomial Heaps
 - Each node contains:
 - left child, right sibling, parent pointers
 - degreee (is the tree rooted at this node $B_0, B_1,$ etc.)
 - data
 - Each list of children sorted by degree

13-12: Binomial Heaps

- How can we find the minimum element in a binomial heap?
- How long does it take?

13-13: Binomial Heaps

- How can we find the minimum element in a binomial heap?
 - Look at the root of each tree in the list, find smallest value
- How long does it take?
 - Heap has *n* elements
 - Represent n as a binary number
 - B_k is in heap iff kth binary digit of n is 1
 - Number of trees in heap $\in O(\lg n)$

13-14: Binomial Heaps

- Merging Heaps H_1 and H_2
 - Merge root lists of H_1 and H_2
 - What property of binomial heaps may be broken?
 - How do we fix it?

13-15: Binomial Heaps

- Merging Heaps H_1 and H_2
 - Merge root lists of H_1 and H_2
 - Could now have two trees with same degree
 - Go through list from smallest degree to largest degree
 - If two trees have same degree, combine them into one tree of larger degree
 - If three trees have same degree (how can this happen?) leave one, combine other two into tree of larger degree

3

6

13-16: Binomial Heaps

13-17: Binomial Heaps

13-20: Binomial Heaps

13-21: Binomial Heaps

- Removing minimum element
 - How can we remove the minimum element
 - *HINT*: Be lazy use operations that we already have

13-22: Binomial Heaps

- Removing minimum element
 - Find tree T that has minimum value at root, remove T from the list
 - Remove the root of T
 - Leaving a list of smaller trees
 - Reverse list of smaller trees
 - Merge two lists of trees together

13-23: Binomial Heaps

• Removing minimum element

13-24: Binomial Heaps

• Removing minimum element

• Removing minimum element

13-26: Binomial Heaps

• Removing minimum element

13-29: Binomial Heaps

• Removing minimum element

13-30: Binomial Heaps

- Removing minimum element
 - Time?

13-31: Binomial Heaps

- Removing minimum element
 - Time?
 - Find the smallest element:
 - Reverse list of children
 - Merge heaps

13-32: Binomial Heaps

- Removing minimum element
 - Time?
 - Find the smallest element: $O(\lg n)$
 - Reverse list of children $O(\lg n)$
 - Merge heaps $O(\lg n)$

13-33: Binomial Heaps

• Decreasing the key of an element (assuming you have a pointer to it)

13-34: Binomial Heaps

- Decreasing the key of an element (assuming you have a pointer to it)
 - Decrease key value
 - While value < parent, swap with parent
 - Exactly like standard, binary heaps
- Time: $O(\lg n)$

13-35: Binomial Heaps

• How could we delete an arbitrary element (assuming we had a pointer to this element)?

13-36: Binomial Heaps

- How could we delete an arbitrary element (assuming we had a pointer to this element)?
 - Decrease key to $-\infty$, Time $O(\lg n)$
 - Remove smallest, Time $O(\lg n)$

13-37: Fibonacci Heaps

- A Fibonacci Heap, like a Binomial Heap, is a collection of min-heap ordered trees
 - No restriction on the # of trees of the same size
 - (We'll relax some of the other restrictions later ...)

• Maintain a pointer to tree with smallest root

13-39: Fibonacci Heaps

- Implementation
 - Each node has pointer to parent
 - Children are stored in circular linked list
 - No ordering among the children
 - Maintain a pointer to the tree with the smallest root

13-40: Fibonacci Heaps

13-41: Fibonacci Heaps

- We will use amortized analysis, using the potential method, to analyze Fibonacci heaps
- $\Phi = c * t(H)$
 - t(H) = # of trees in the heap
 - (We will modify this Φ in a bit ...)

13-42: Fibonacci Heaps -Min

• Finding the minimum element

13-43: Fibonacci Heaps - Min

- Finding the minimum element
 - Look at the element pointed to by minimum pointer
 - Potential not changed
 - Takes time O(1)

13-44: Fibonacci Heaps - Merge

- Merging two heaps H_1 and H_2
 - Combine their root lists into one list
 - Takes a constant # of pointer changes (example on board)
 - Set minimum pointer
 - Change in potential:

$$\Phi(H) - (\Phi(H_1) + \Phi(H_2)) = t(H) - (t(H_1) + t(H_2)) = 0$$

13-45: Fibonacci Heaps - Delete Min

- To delete the minimum node:
 - Remove smallest node
 - Add its children to root list
 - Consolidate root list
 - Link together nodes of the same degree until there is at most one node of each degree
 - Make it back into a Binomial Heap
 - Common practice when you only care about amortized running time put off work, and do it all at once

13-46: Fibonacci Heaps - Delete Min

Consolidate

```
Create an array A[], initially empty

// Eventually, A[i] will hold tree of degree i

For each node w in the root list

x \leftarrow w

d \leftarrow \text{degree}(x)

while A[d]! = \text{nil} do

y \leftarrow A[d]

x \leftarrow \text{link}(x, y)

A[d] \leftarrow nil

d \leftarrow d + 1

A[d] \leftarrow x

Link elements of A together as new root list

Recalculate min
```

13-47: Fibonacci Heaps - Delete Min

• Amortized cost to remove min:

$$am(c_{rem-min}) = c_{rem-min} + \Phi(H_{new}) - \Phi(H_{old})$$

= $(C_1 * t + c_2 * max_deg) + c * max_deg - c * t$
 $\in O(max_deg)$

- $max_deg \in O(\lg n)$
- $am(c_{rem-min}) \in O(\lg n)$

13-48: Fib. Heaps - Decrease Key

- Like to implement decrease key in amortized time O(1)
 - Add a new "Mark" field to each node in the tree
 - Mark is true if node has lost a child since parent pointer changed
 - New Potential function $\Phi(H) = t(H) + 2 * m(H)$
 - (extra constant *c* left out for clarity)

13-49: Fib. Heaps - Decrease Key

- With new potential function, merge and find still have amortized running time O(1), and remove-min still has amortized running time $O(\lg n)$
 - Since none of those operations increase m(H)
- We can use the marks to make decrease-key work in time O(1)

13-50: Fib. Heaps - Decrease Key

- Decreasing a key can break the heap property
- Cut: Move Decreased node to root list
 - Now the heap property still holds
- Cascading cut:
 - If parent is not marked, mark parent
 - If parent is marked, cut parent, Cascading cut parent
- Examples (on board)

13-51: Fib. Heaps - Decrease Key

- Amortized cost for Decrease Key:
 - Actual Cost + Change in potential
 - Actual Cost:
 - O(1) to move element to root list
 - # of cascading cuts \boldsymbol{c}

- Change in Potential
 - # of added trees 2 * # of nodes unmarked
 - 4 *c*
- Amortized cost: $O(1) + c + 4 c \in O(1)$

13-52: Fib. Heaps - Decrease Key

- Fibonacci heaps are no longer binomial heaps
- Analysis of Extract-min used the fact that they are binomial heaps to show that maximum degree of any node $\in O(\lg n)$
- Even with cuts/cascading cuts, maximum degree of any node is still $\in O(\lg n)$
 - See textbook, section 20.4 for details
- Previous analysis still correct