15-0: Graphs

- A graph consists of:
 - A set of nodes or vertices (terms are interchangeable)
 - A set of edges or arcs (terms are interchangeable)
- Edges in graph can be either directed or undirected

15-1: Graphs & Edges

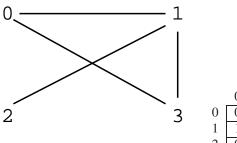
- Edges can be labeled or unlabeled
 - Edge labels are typically the *cost* associated with an edge
 - e.g., Nodes are cities, edges are roads between cities, edge label is the length of road

15-2: Graph Representations

- Adjacency Matrix
- Represent a graph with a two-dimensional array G
 - G[i][j] = 1 if there is an edge from node *i* to node *j*
 - G[i][j] = 0 if there is no edge from node i to node j
- If graph is undirected, matrix is symmetric
- Can represent edges labeled with a cost as well:
 - G[i][j] = cost of link between i and j
 - If there is no direct link, $G[i][j] = \infty$

15-3: Adjacency Matrix

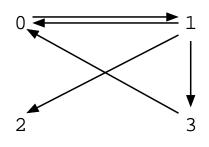
• Examples:



	0	1	2	3
)	0	1	0	1
1	1	0	1	1
2	0	1	0	0
3	1	1	0	0

15-4: Adjacency Matrix

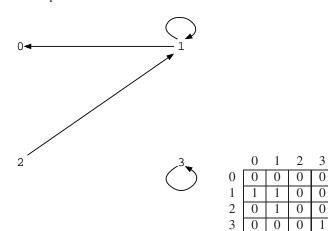
• Examples:



	0	1	2	3
0	0	1	0	0
1	1	0	1	1
2 3	0	0	0	0
3	1	0	0	0

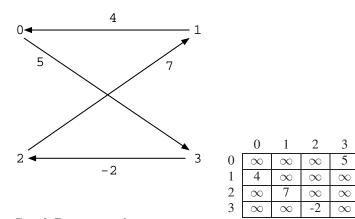
15-5: Adjacency Matrix

• Examples:



15-6: Adjacency Matrix

• Examples:



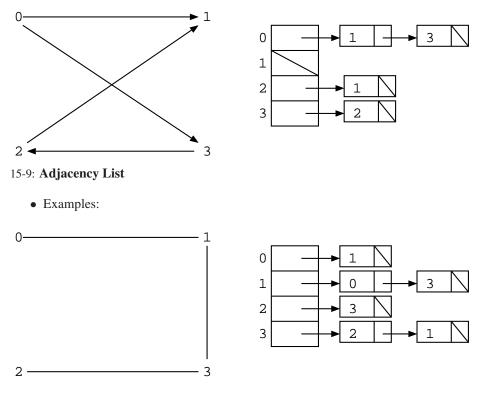
15-7: Graph Representations

- Adjacency List
- Maintain a linked-list of the neighbors of every vertex.
 - \bullet *n* vertices

- Array of n lists, one per vertex
- Each list *i* contains a list of all vertices adjacent to *i*.

15-8: Adjacency List

• Examples:



• Note – lists are not always sorted

15-10: Sparse vs. Dense

- Sparse graph relatively few edges
- Dense graph lots of edges
- Complete graph contains all possible edges
 - These terms are fuzzy. "Sparse" in one context may or may not be "sparse" in a different context

15-11: Breadth-First Search

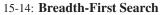
- Method for searching a graph
- Specify a source node in the grap
- Find all nodes reachable from that node
 - First find all nodes 1 unit away
 - Next find all nodes 2 units away

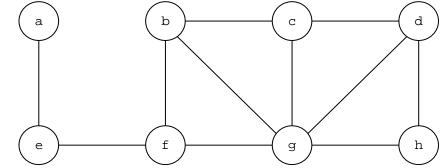
• ... etc

15-12: Breadth-First Search

- Auxiliary Data Structures
 - "color" for each vertex white, black, grey
 - Used to make sure we don't visit vertices more than once
 - Parent of each vertex (Path to source node)
 - Distance of each vertex from source

15-13: Breadth-First Search



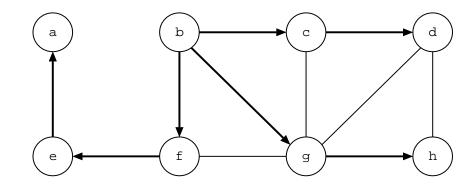


Q: b

15-15: Breadth-First Search

- BFS computes the shortest path from the start vertex to every other vertex
- We can run BFS on a directed or undirected tree
- Defines a "BFS Tree"
 - Parent pointers p[v]
 - BFS Tree is directed

15-16: Breadth-First Search



15-17: Breadth-First Search

- BFS Running time:
 - V vertices
 - E edges

15-18: Breadth-First Search

- BFS Running time:
 - V vertices
 - E edges
- Running time $\Theta(V+E)$
 - In terms of just V, $O(V^2)$ (why?)

15-19: Depth-First Search

DFS(G)

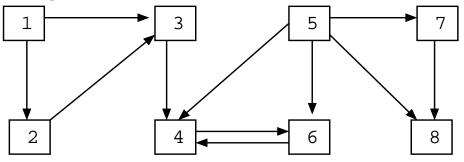
for each vertex v in G do $color[v] \leftarrow WHITE$ $\pi[v] = nil$ time $\leftarrow 0$ for each vertex v in G do if color[v] = WHITEDFS-VISIT(v)

15-20: Depth-First Search

 $\begin{array}{l} \text{DFS-VISIT}(v,G) \\ \text{color}[v] \leftarrow \text{GRAY} \\ \text{time} \leftarrow \text{time} + 1 \\ d[v] \leftarrow \text{time} \\ \text{for each } u \text{ adjacent to } v \text{ in } G \text{ do} \\ \text{if color}[u] = \text{WHITE then} \\ \pi[u] \leftarrow v \end{array}$

 $\begin{array}{l} \mathsf{DFS-VISIT}(u,G)\\ \mathsf{color}[v] \gets \mathsf{BLACK}\\ \mathsf{time} \gets \mathsf{time} + 1\\ f[v] \gets \mathsf{time} \end{array}$

15-21: Depth-First Search



(Do DFS, show discover/finish times & Depth First Forest) 15-22: Depth-First Search

- DFS creates a Depth First Forest
- We can use DFS to classify edges:
 - Tree edges
 - edges in the Depth First Forest
 - Back Edges
 - edge (u, v) that connects u to ancestor v in DFF
 - Forward edges
 - non-tree edge (u, v) that connects u to descendent v in DFF
 - Cross Edges
 - Everything Else

15-23: Depth-First Search

- Labeling edges
 - How could we label edges (tree/back/forward/cross) while we are doing DFS?

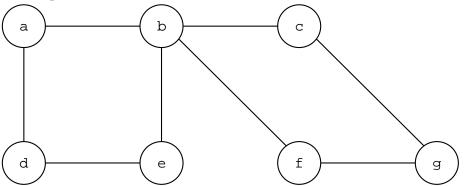
15-24: Depth-First Search

- Labeling edges
 - How could we label edges (tree/back/forward/cross) while we are doing DFS?
 - When examining edge (u, v), if v is:
 - WHITE tree edge
 - GRAY back edge
 - BLACK forward edge or cross edge

15-25: Depth-First Search

• Labeling edges

- Can we have cross edges in a DFS of an undirected graph?
- Can we have forward edges in a DFS of an undirected graph?



(Do DFS, show discover/finish times & Depth First Forest) 15-27: **Depth-First Search**



(Do DFS, show discover/finish times & Depth First Forest) 15-28: **Topological Sort**

- Directed Acyclic Graph, Vertices $v_1 \dots v_n$
- Create an ordering of the vertices
 - If there a path from v_i to v_j , then v_i appears before v_j in the ordering
- Example: Prerequisite chains

15-29: Topological Sort

- How could we use DFS to do a Topological Sort?
 - (Hint Use discover and/or finish times)

15-30: Topological Sort

- How could we use DFS to do a Topological Sort?
 - (Hint Use discover and/or finish times)
 - (What does it mean if node x finished before node y?)

15-31: Topological Sort

- How could we use DFS to do a Topological Sort?
 - Do DFS, computing finishing times for each vertex
 - As each vertex is finished, add to front of a linked list
 - This list is a valid topological sort

15-32: Topological Sort

- Second method for doing topological sort:
- Which node(s) could be first in the topological ordering?
 - Node(s) with no incident (incoming) edges

15-33: Topological Sort

- Pick a node v_k with no incident edges
- Add v_k to the ordering
- Remove v_k and all edges from v_k from the graph
- Repeat until all nodes are picked.

15-34: Topological Sort

- How can we find a node with no incident edges?
- Count the incident edges of all nodes

15-35: Topological Sort

```
for (i=0; i < NumberOfVertices; i++)
NumIncident[i] = 0;</pre>
```

```
for(i=0; i < NumberOfVertices; i++)
  each node k adjacent to i
    NumIncident[k]++</pre>
```

15-36: Topological Sort

```
for(i=0; i < NumberOfVertices; i++)
NumIncident[i] = 0;</pre>
```

```
for(i=0; i < NumberOfVertices; i++)
for(tmp=G[i]; tmp != null; tmp=tmp.next())
NumIncident[tmp.neighbor()]++</pre>
```

15-37: Topological Sort

- Create NumIncident array
- Repeat
 - Search through NumIncident to find a vertex v with NumIncident[v] == 0
 - Add v to the ordering
 - Decrement NumIncident of all neighbors of v
 - Set NumIncident[v] = -1
- Until all vertices have been picked

15-38: Topological Sort

• In a graph with V vertices and E edges, how long does this version of topological sort take?

15-39: Topological Sort

- In a graph with V vertices and E edges, how long does this version of topological sort take?
 - $\Theta(V^2 + E) = \Theta(V^2)$
 - Since $E \in O(V^2)$

15-40: Topological Sort

• Where are we spending "extra" time

15-41: Topological Sort

- Where are we spending "extra" time
 - Searching through NumIncident each time looking for a vertex with no incident edges
 - Keep around a set of all nodes with no incident edges
 - Remove an element v from this set, and add it to the ordering
 - Decrement NumIncident for all neighbors of v
 - If NumIncident[k] is decremented to 0, add k to the set.
 - How do we implement the set of nodes with no incident edges?

15-42: Topological Sort

- Where are we spending "extra" time
 - Searching through NumIncident each time looking for a vertex with no incident edges
 - Keep around a set of all nodes with no incident edges
 - Remove an element v from this set, and add it to the ordering
 - Decrement NumIncident for all neighbors of v
 - If NumIncident[k] is decremented to 0, add k to the set.
 - How do we implement the set of nodes with no incident edges?
 - Use a stack

15-43: Topological Sort

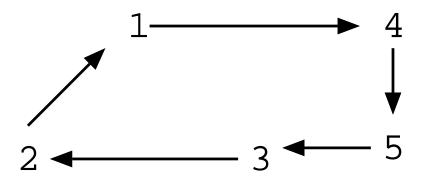
- Examples!!
 - Graph
 - Adjacency List
 - NumIncident
 - Stack

15-44: More DFS Applications

- Depth First Search can be used to calculate the connected components of a directed graph
- First, some definitions and examples:

15-45: Strongly Connected Graph

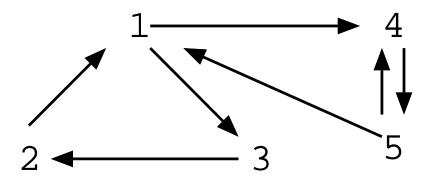
• Directed Path from every node to every other node



• Strongly Connected

15-46: Strongly Connected Graph

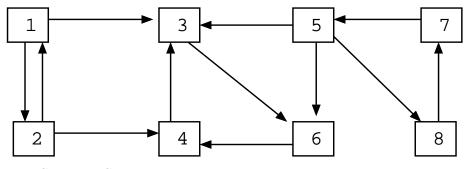
• Directed Path from every node to every other node



• Strongly Connected

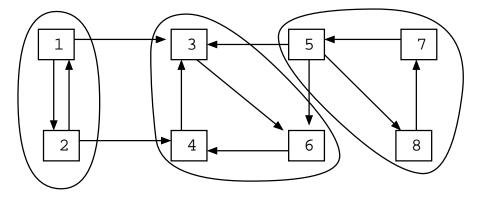
15-47: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

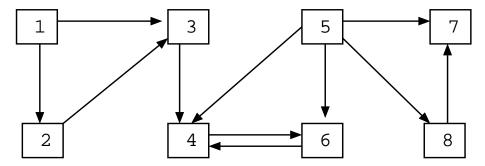


15-48: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

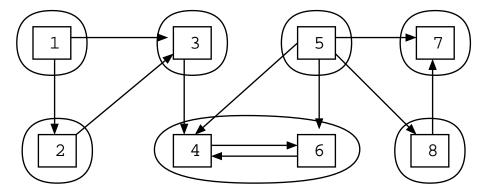


• Subgraph (subset of the vertices) that is strongly connected.



15-50: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.



15-51: Connected Components

- Connected components of the graph are the largest possible strongly connected subgraphs
- If we put each vertex in its own component each component would be (trivially) strongly connected
 - Those would not be the connected components of the graph unless there were no larger connected subgraphs

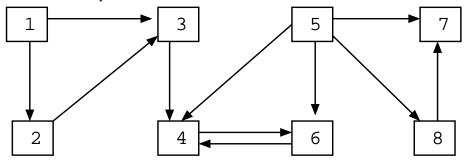
15-52: Connected Components

- Calculating Connected Components
 - Two vertices v_1 and v_2 are in the same connected component if and only if:
 - Directed path from v_1 to v_2
 - Directed path from v_2 to v_1
 - To find connected components find directed paths
 - Use DFS: d[v] and f[v]

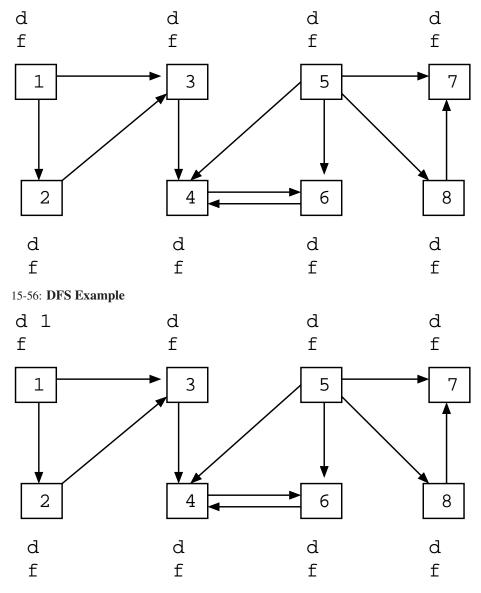
15-53: DFS Revisited

- Recall that we calculate the order in which we visit the elements in a Depth-First Search
- For any vertex v in a DFS:
 - d[v] = *Discovery* time when the vertex is first visited
 - f[v] = Finishing time when we have finished with a vertex (and all of its children)

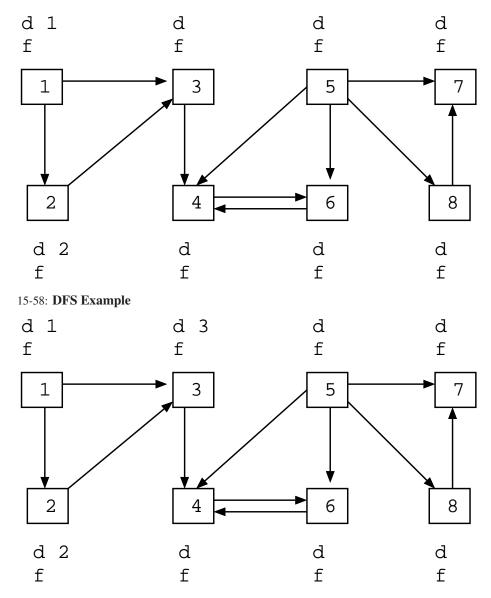
15-54: DFS Example



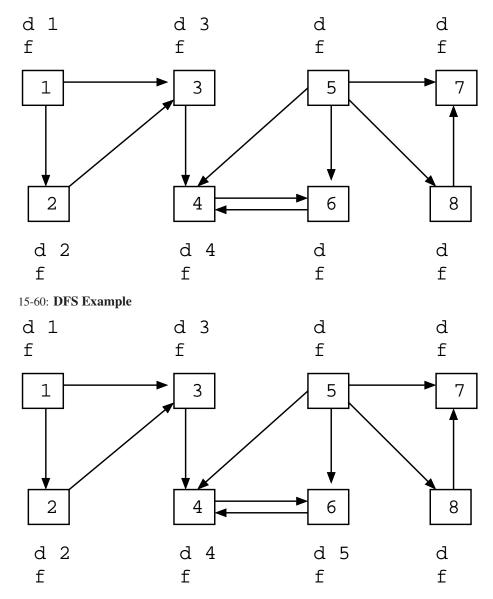
15-55: DFS Example



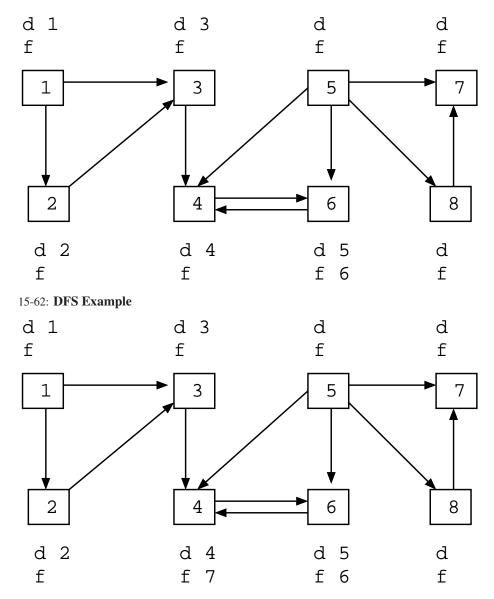
15-57: DFS Example



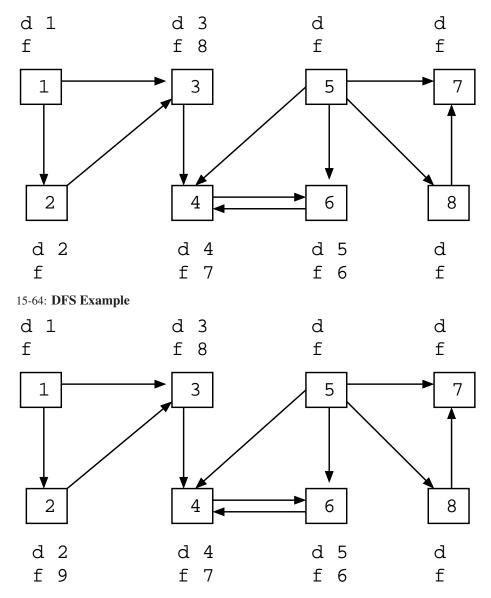
15-59: DFS Example



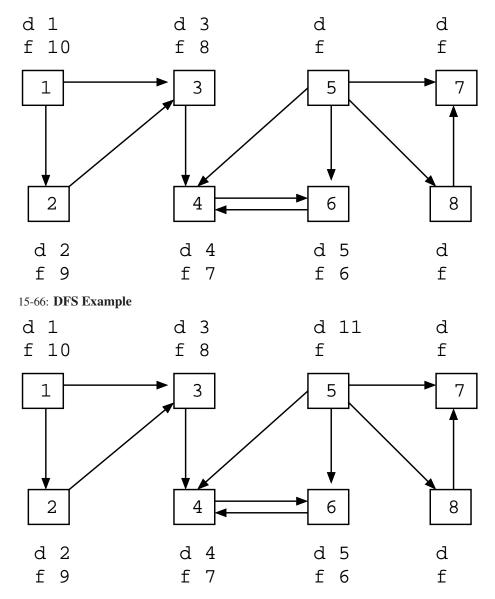
15-61: DFS Example



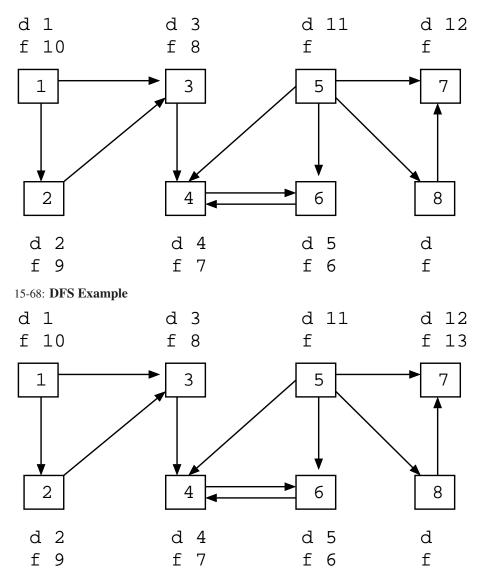
15-63: DFS Example



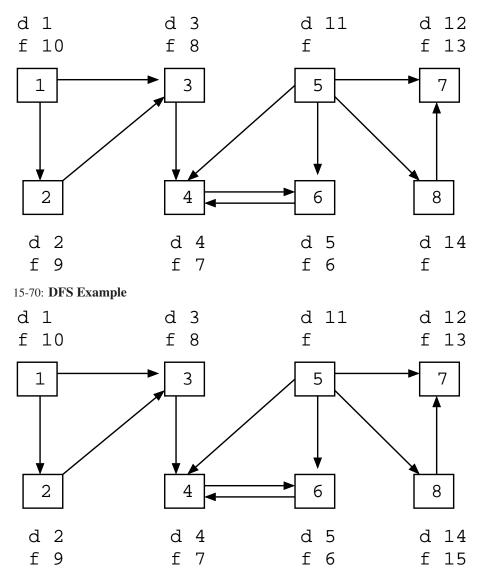
15-65: DFS Example



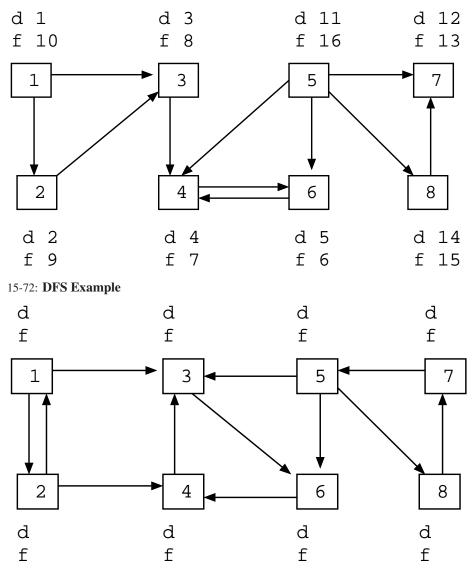
15-67: DFS Example

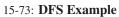


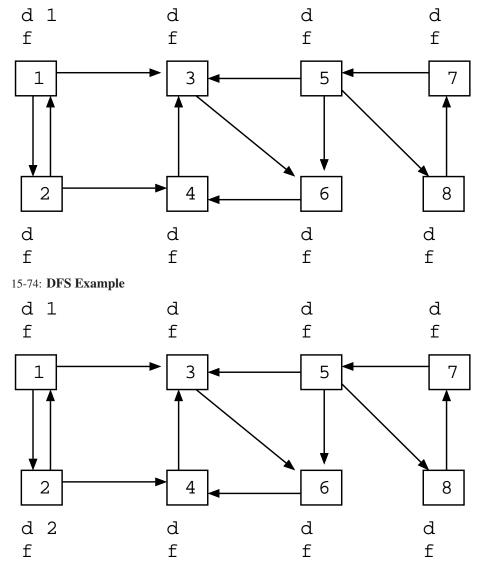
^{15-69:} DFS Example

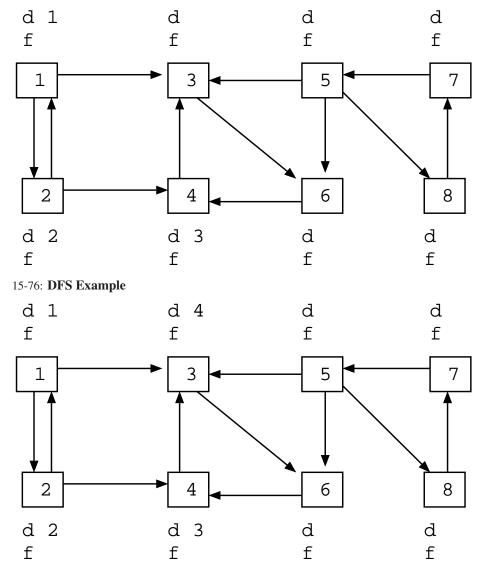


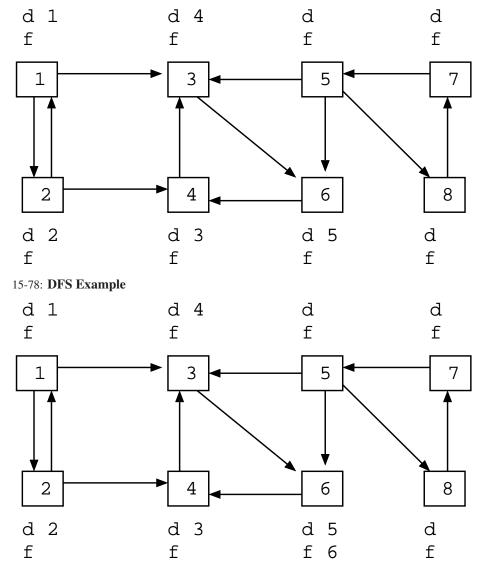
^{15-71:} DFS Example

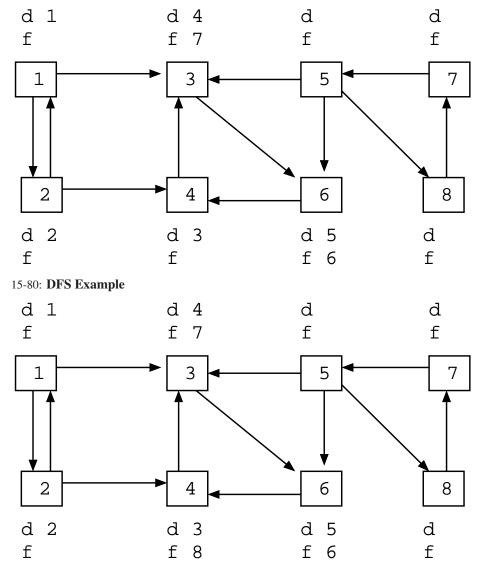


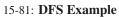


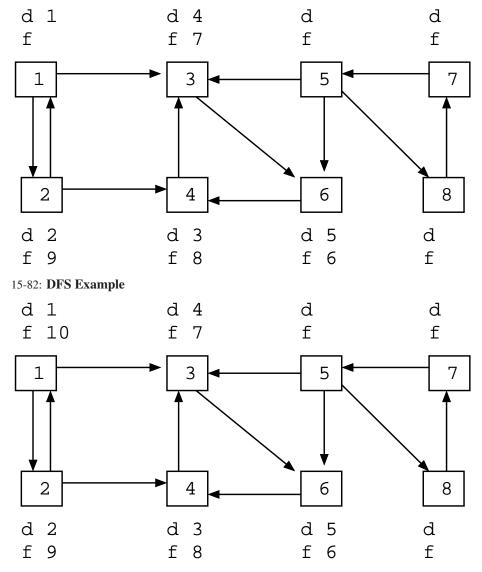


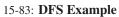


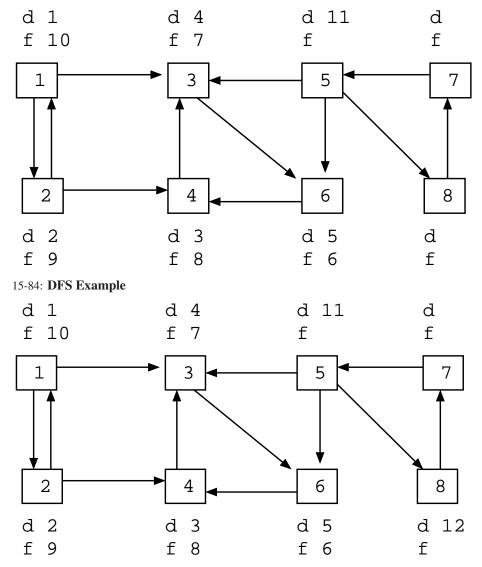




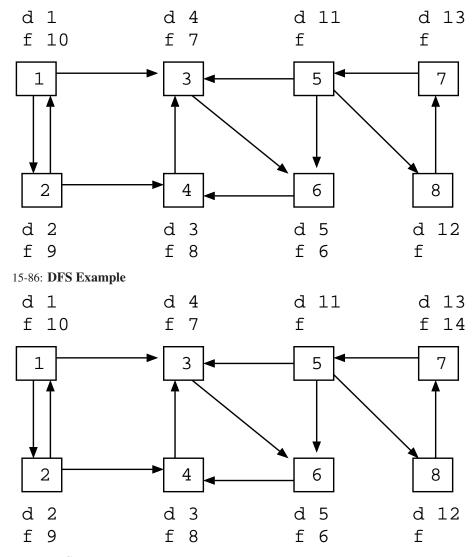




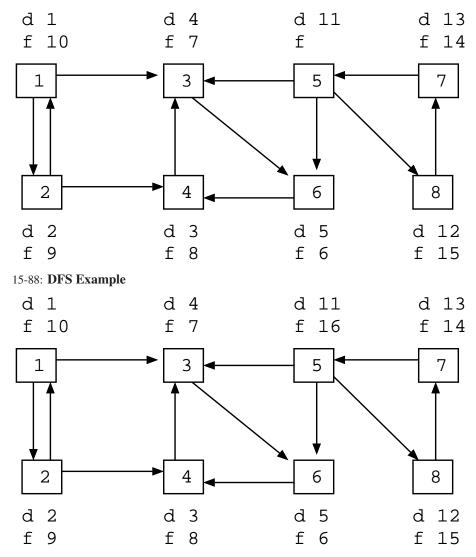




15-85: DFS Example



15-87: DFS Example



15-89: Using d[] & f[]

• Given two vertices v_1 and v_2 , what do we know if $f[v_2] < f[v_1]$?

15-90: Using d[] & f[]

- Given two vertices v_1 and v_2 , what do we know if $f[v_2] < f[v_1]$?
 - Either:
 - Path from v_1 to v_2
 - Start from v_1
 - Eventually visit v_2
 - Finish v_2
 - Finish v_1

15-91: Using d[] & f[]

- Given two vertices v_1 and v_2 , what do we know if $f[v_2] < f[v_1]$?
 - Either:
 - Path from v_1 to v_2
 - No path from v_2 to v_1
 - Start from v_2
 - Eventually finish v_2
 - Start from v_1
 - Eventually finish v_1

15-92: Using d[] & f[]

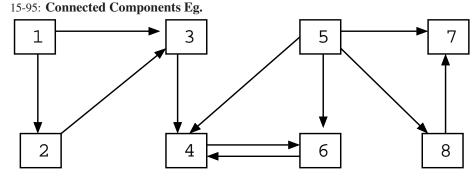
- If $f[v_2] < f[v_1]$:
 - Either a path from v_1 to v_2 , or no path from v_2 to v_1
 - If there is a path from v_2 to v_1 , then there must be a path from v_1 to v_2
- $f[v_2] < f[v_1]$ and a path from v_2 to $v_1 \Rightarrow v_1$ and v_2 are in the same connected component

15-93: Calculating paths

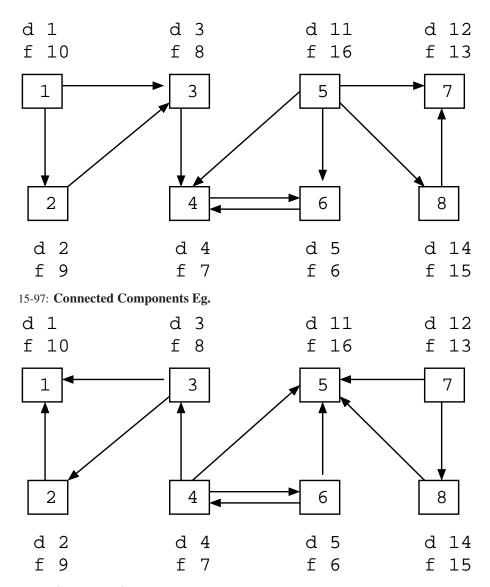
- Path from v_2 to v_1 in G if and only if there is a path from v_1 to v_2 in G^T
 - G^T is the transpose of G G with all edges reversed
- If after DFS, $f[v_2] < f[v_1]$
- Run second DFS on G^T , starting from v_1 , and v_1 and v_2 are in the same DFS spanning tree
- v_1 and v_2 must be in the same connected component

15-94: Connected Components

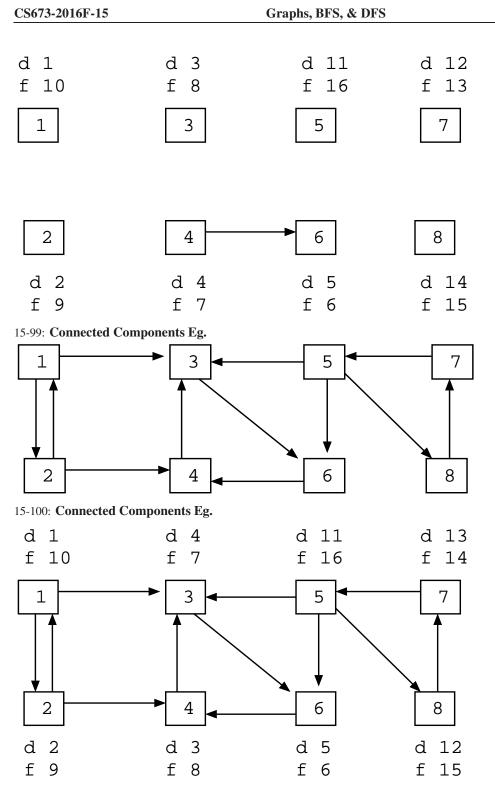
- Run DFS on G, calculating f[] times
- Compute G^T
- Run DFS on G^T examining nodes in *inverse order of finishing times* from first DFS
- Any nodes that are in the same DFS search tree in G^T must be in the same connected component



15-96: Connected Components Eg.



15-98: Connected Components Eg.



15-101: Connected Components Eg.

