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15-0: Graphs

• A graph consists of:

• A set of nodes or vertices (terms are interchangeable)

• A set of edges or arcs (terms are interchangeable)

• Edges in graph can be either directed or undirected

15-1: Graphs & Edges

• Edges can be labeled or unlabeled

• Edge labels are typically the cost associated with an edge

• e.g., Nodes are cities, edges are roads between cities, edge label is the length of road

15-2: Graph Representations

• Adjacency Matrix

• Represent a graph with a two-dimensional array G

• G[i][j] = 1 if there is an edge from node i to node j

• G[i][j] = 0 if there is no edge from node i to node j

• If graph is undirected, matrix is symmetric

• Can represent edges labeled with a cost as well:

• G[i][j] = cost of link between i and j

• If there is no direct link, G[i][j] =∞

15-3: Adjacency Matrix

• Examples:

0 1

2 3
0 1 2 3

0 0 1 0 1

1 1 0 1 1

2 0 1 0 0

3 1 1 0 0

15-4: Adjacency Matrix

• Examples:
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0 1

2 3
0 1 2 3

0 0 1 0 0

1 1 0 1 1

2 0 0 0 0

3 1 0 0 0

15-5: Adjacency Matrix

• Examples:

0 1

2 3 0 1 2 3

0 0 0 0 0

1 1 1 0 0

2 0 1 0 0

3 0 0 0 1

15-6: Adjacency Matrix

• Examples:

0 1

2 3

4

5 7

-2

0 1 2 3

0 ∞ ∞ ∞ 5

1 4 ∞ ∞ ∞

2 ∞ 7 ∞ ∞

3 ∞ ∞ -2 ∞

15-7: Graph Representations

• Adjacency List

• Maintain a linked-list of the neighbors of every vertex.

• n vertices
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• Array of n lists, one per vertex

• Each list i contains a list of all vertices adjacent to i.

15-8: Adjacency List

• Examples:

0 1

2 3

0

1

2

3

1 3

1

2

15-9: Adjacency List

• Examples:

0 1

2 3

0

1

2

3

1

3

2

0 3

1

• Note – lists are not always sorted

15-10: Sparse vs. Dense

• Sparse graph – relatively few edges

• Dense graph – lots of edges

• Complete graph – contains all possible edges

• These terms are fuzzy. “Sparse” in one context may or may not be “sparse” in a different context

15-11: Breadth-First Search

• Method for searching a graph

• Specify a source node in the grap

• Find all nodes reachable from that node

• First find all nodes 1 unit away

• Next find all nodes 2 units away
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• ... etc

15-12: Breadth-First Search

• Auxiliary Data Structures

• “color” for each vertex – white, black, grey

• Used to make sure we don’t visit vertices more than once

• Parent of each vertex (Path to source node)

• Distance of each vertex from source

15-13: Breadth-First Search

BFS(G, s)

for each vertex u in V [G] do

color[u]←WHITE

d[u]←∞
π[u]← nil

color[s]← GRAY

d[s]← 0
Q ← {s}
while Q not empty do

u←Q.dequeue

for each v adj. to u

if color[v] = WHITE

color[v]← GRAY

d[v] ← d[u] + 1
π[v] ← u

Q.enqueue(v)

color[u]← BLACK

15-14: Breadth-First Search

a b c d

e f g h

Q: b

15-15: Breadth-First Search

• BFS computes the shortest path from the start vertex to every other vertex

• We can run BFS on a directed or undirected tree

• Defines a “BFS Tree”

• Parent pointers p[v]

• BFS Tree is directed

15-16: Breadth-First Search
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a b c d

e f g h

Q: 

15-17: Breadth-First Search

• BFS Running time:

• V vertices

• E edges

15-18: Breadth-First Search

• BFS Running time:

• V vertices

• E edges

• Running time Θ(V + E)

• In terms of just V , O(V 2) (why?)

15-19: Depth-First Search

DFS(G)

for each vertex v in G do

color[v]←WHITE

π[v] = nil

time← 0

for each vertex v in G do

if color[v] = WHITE

DFS-VISIT(v)

15-20: Depth-First Search

DFS-VISIT(v, G)

color[v]← GRAY

time← time +1

d[v]← time

for each u adjacent to v in G do

if color[u] = WHITE then

π[u]← v
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DFS-VISIT(u,G)

color[v]← BLACK

time← time + 1

f [v]← time

15-21: Depth-First Search

71

2

3

4

5

6 8

(Do DFS, show discover/finish times & Depth First Forest) 15-22: Depth-First Search

• DFS creates a Depth First Forest

• We can use DFS to classify edges:

• Tree edges

• edges in the Depth First Forest

• Back Edges

• edge (u, v) that connects u to ancestor v in DFF

• Forward edges

• non-tree edge (u, v) that connects u to descendent v in DFF

• Cross Edges

• Everything Else

15-23: Depth-First Search

• Labeling edges

• How could we label edges (tree/back/forward/cross) while we are doing DFS?

15-24: Depth-First Search

• Labeling edges

• How could we label edges (tree/back/forward/cross) while we are doing DFS?

• When examining edge (u, v), if v is:

• WHITE – tree edge

• GRAY – back edge

• BLACK – forward edge or cross edge

15-25: Depth-First Search

• Labeling edges
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• Can we have cross edges in a DFS of an undirected graph?

• Can we have forward edges in a DFS of an undirected graph?

15-26: Depth-First Search

a b c

d e f g

(Do DFS, show discover/finish times & Depth First Forest)

15-27: Depth-First Search

a b c

d e f g

h i

(Do DFS, show discover/finish times & Depth First Forest)

15-28: Topological Sort

• Directed Acyclic Graph, Vertices v1 . . . vn

• Create an ordering of the vertices

• If there a path from vi to vj , then vi appears before vj in the ordering

• Example: Prerequisite chains

15-29: Topological Sort

• How could we use DFS to do a Topological Sort?

• (Hint – Use discover and/or finish times)
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15-30: Topological Sort

• How could we use DFS to do a Topological Sort?

• (Hint – Use discover and/or finish times)

• (What does it mean if node x finished before node y?)

15-31: Topological Sort

• How could we use DFS to do a Topological Sort?

• Do DFS, computing finishing times for each vertex

• As each vertex is finished, add to front of a linked list

• This list is a valid topological sort

15-32: Topological Sort

• Second method for doing topological sort:

• Which node(s) could be first in the topological ordering?

• Node(s) with no incident (incoming) edges

15-33: Topological Sort

• Pick a node vk with no incident edges

• Add vk to the ordering

• Remove vk and all edges from vk from the graph

• Repeat until all nodes are picked.

15-34: Topological Sort

• How can we find a node with no incident edges?

• Count the incident edges of all nodes

15-35: Topological Sort

for (i=0; i < NumberOfVertices; i++)

NumIncident[i] = 0;

for(i=0; i < NumberOfVertices; i++)

each node k adjacent to i

NumIncident[k]++

15-36: Topological Sort

for(i=0; i < NumberOfVertices; i++)

NumIncident[i] = 0;

for(i=0; i < NumberOfVertices; i++)

for(tmp=G[i]; tmp != null; tmp=tmp.next())

NumIncident[tmp.neighbor()]++



CS673-2016F-15 Graphs, BFS, & DFS 9

15-37: Topological Sort

• Create NumIncident array

• Repeat

• Search through NumIncident to find a vertex v with NumIncident[v] == 0

• Add v to the ordering

• Decrement NumIncident of all neighbors of v

• Set NumIncident[v] = -1

• Until all vertices have been picked

15-38: Topological Sort

• In a graph with V vertices and E edges, how long does this version of topological sort take?

15-39: Topological Sort

• In a graph with V vertices and E edges, how long does this version of topological sort take?

• Θ(V 2 + E) = Θ(V 2)

• Since E ∈ O(V 2)

15-40: Topological Sort

• Where are we spending “extra” time

15-41: Topological Sort

• Where are we spending “extra” time

• Searching through NumIncident each time looking for a vertex with no incident edges

• Keep around a set of all nodes with no incident edges

• Remove an element v from this set, and add it to the ordering

• Decrement NumIncident for all neighbors of v

• If NumIncident[k] is decremented to 0, add k to the set.

• How do we implement the set of nodes with no incident edges?

15-42: Topological Sort

• Where are we spending “extra” time

• Searching through NumIncident each time looking for a vertex with no incident edges

• Keep around a set of all nodes with no incident edges

• Remove an element v from this set, and add it to the ordering

• Decrement NumIncident for all neighbors of v

• If NumIncident[k] is decremented to 0, add k to the set.

• How do we implement the set of nodes with no incident edges?

• Use a stack
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15-43: Topological Sort

• Examples!!

• Graph

• Adjacency List

• NumIncident

• Stack

15-44: More DFS Applications

• Depth First Search can be used to calculate the connected components of a directed graph

• First, some definitions and examples:

15-45: Strongly Connected Graph

• Directed Path from every node to every other node

1

2 3

4

5

• Strongly Connected

15-46: Strongly Connected Graph

• Directed Path from every node to every other node

1

2 3

4

5

• Strongly Connected
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15-47: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

71

2

3

4

5

6 8

15-48: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

71

2

3

4

5

6 8

15-49: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

71

2

3

4

5

6 8

15-50: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.
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71

2

3

4

5

6 8

15-51: Connected Components

• Connected components of the graph are the largest possible strongly connected subgraphs

• If we put each vertex in its own component – each component would be (trivially) strongly connected

• Those would not be the connected components of the graph – unless there were no larger connected

subgraphs

15-52: Connected Components

• Calculating Connected Components

• Two vertices v1 and v2 are in the same connected component if and only if:

• Directed path from v1 to v2

• Directed path from v2 to v1

• To find connected components – find directed paths

• Use DFS: d[v] and f [v]

15-53: DFS Revisited

• Recall that we calculate the order in which we visit the elements in a Depth-First Search

• For any vertex v in a DFS:

• d[v] = Discovery time – when the vertex is first visited

• f[v] = Finishing time – when we have finished with a vertex (and all of its children)

15-54: DFS Example

71

2

3

4

5

6 8

15-55: DFS Example
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71
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d
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d
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d
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d
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d
f

d
f

15-56: DFS Example

71
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6 8

d 1
f

d
f

d
f

d
f

d
f

d
f

d
f

d
f

15-57: DFS Example
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71
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3

4

5

6 8

d 1
f

d
f

d
f

d
f

d 2
f

d
f

d
f

d
f

15-58: DFS Example
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d 1
f

d 3
f

d
f

d
f

d 2
f

d
f

d
f

d
f

15-59: DFS Example
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d 1
f
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d
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d
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15-60: DFS Example
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d 1
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d
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d 4
f

d 5
f

d
f

15-61: DFS Example
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71
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6 8

d 1
f

d 3
f

d
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d
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d 2
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d 4
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d 5
f 6

d
f

15-62: DFS Example
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d 1
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d
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d
f

d 2
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d 4
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d 5
f 6

d
f

15-63: DFS Example
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d 1
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d
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f

15-64: DFS Example
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d 1
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d
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d 2
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d 5
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d
f

15-65: DFS Example
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15-66: DFS Example

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d 11
f

d
f

d 2
f 9

d 4
f 7

d 5
f 6

d
f

15-67: DFS Example
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15-68: DFS Example
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15-69: DFS Example
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d 5
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d 14
f

15-70: DFS Example

71

2

3

4

5

6 8

d 1
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d 2
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d 4
f 7

d 5
f 6

d 14
f 15

15-71: DFS Example
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15-72: DFS Example
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15-73: DFS Example
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15-74: DFS Example
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15-75: DFS Example
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15-76: DFS Example
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15-77: DFS Example
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15-78: DFS Example
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15-79: DFS Example
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15-80: DFS Example
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15-81: DFS Example
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15-82: DFS Example
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15-83: DFS Example
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15-84: DFS Example
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15-85: DFS Example
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15-86: DFS Example
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15-87: DFS Example
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15-88: DFS Example
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15-89: Using d[] & f[]

• Given two vertices v1 and v2, what do we know if f [v2] < f [v1]?

15-90: Using d[] & f[]

• Given two vertices v1 and v2, what do we know if f [v2] < f [v1]?

• Either:

• Path from v1 to v2

• Start from v1

• Eventually visit v2

• Finish v2

• Finish v1

15-91: Using d[] & f[]
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• Given two vertices v1 and v2, what do we know if f [v2] < f [v1]?

• Either:

• Path from v1 to v2

• No path from v2 to v1

• Start from v2

• Eventually finish v2

• Start from v1

• Eventually finish v1

15-92: Using d[] & f[]

• If f [v2] < f [v1]:

• Either a path from v1 to v2, or no path from v2 to v1

• If there is a path from v2 to v1, then there must be a path from v1 to v2

• f [v2] < f [v1] and a path from v2 to v1 ⇒ v1 and v2 are in the same connected component

15-93: Calculating paths

• Path from v2 to v1 in G if and only if there is a path from v1 to v2 in GT

• GT is the transpose of G – G with all edges reversed

• If after DFS, f [v2] < f [v1]

• Run second DFS on GT , starting from v1, and v1 and v2 are in the same DFS spanning tree

• v1 and v2 must be in the same connected component

15-94: Connected Components

• Run DFS on G, calculating f[] times

• Compute GT

• Run DFS on GT – examining nodes in inverse order of finishing times from first DFS

• Any nodes that are in the same DFS search tree in GT must be in the same connected component

15-95: Connected Components Eg.
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15-96: Connected Components Eg.



CS673-2016F-15 Graphs, BFS, & DFS 31

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d 11
f 16

d 12
f 13

d 2
f 9

d 4
f 7

d 5
f 6

d 14
f 15

15-97: Connected Components Eg.
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15-98: Connected Components Eg.
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15-99: Connected Components Eg.
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15-100: Connected Components Eg.
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15-101: Connected Components Eg.
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15-102: Connected Components Eg.
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