
CS673-2016F-16 Spanning Trees 1

16-0: Spanning Trees

• Given a connected, undirected graph G

• A subgraph of G contains a subset of the vertices and edges in G

• A Spanning Tree T of G is:

• subgraph of G

• contains all vertices in G

• connected

• acyclic

16-1: Spanning Tree Examples

• Graph

0 1

2 3 4

5 6
16-2: Spanning Tree Examples

• Spanning Tree

0 1

2 3 4

5 6
16-3: Spanning Tree Examples

• Graph

CS673-2016F-16 Spanning Trees 2

0 1

2 3 4

5 6
16-4: Spanning Tree Examples

• Spanning Tree

0 1

2 3 4

5 6
16-5: Minimal Cost Spanning Tree

• Minimal Cost Spanning Tree

• Given a weighted, undirected graph G

• Spanning tree of G which minimizes the sum of all weights on edges of spanning tree

16-6: MST Example

0 1

2 3 4

5 6

2

4 1 3 10

2 7

5 8 4 6

1

16-7: MST Example

CS673-2016F-16 Spanning Trees 3

0 1

2 3 4

5 6

2

1

2

4 6

1

16-8: Minimal Cost Spanning Trees

• Can there be more than one minimal cost spanning tree for a particular graph?

16-9: Minimal Cost Spanning Trees

• Can there be more than one minimal cost spanning tree for a particular graph?

• YES!

• What happens when all edges have unit cost?

16-10: Minimal Cost Spanning Trees

• Can there be more than one minimal cost spanning tree for a particular graph?

• YES!

• What happens when all edges have unit cost?

• All spanning trees are MSTs

16-11: Calculating MST

• Generic MST algorithm:

A← {}
while A does not form a spanning tree

find an edge (u, v) that is safe for A

A← A ∪ {(u, v)}

• (u, v) is safe to for A when A ∪ {(u, v)} is a subset of some MST

16-12: Graph Cut

• “Cut” of a undirected graph is a partition of the vertices in the graph

• An edge crosses a cut if the vertices are in different sets of the partition

• A cut respects a series of edges of no edge crosses the cut

• light edge is an edge that crosses the cut that has minimum cost

CS673-2016F-16 Spanning Trees 4

16-13: Graph Cut

a b c

d e f g

h i

16-14: Graph Cut

a b c

d e f g

h i
Cut Respects These
Edges

16-15: Graph Cut

CS673-2016F-16 Spanning Trees 5

a b c

d e f g

h i

These edges cross
the cut

16-16: Graph Cut

a b c

d e f g

h i

2

5

2 3 7

1

2

1

8

2

1

2

Light Edges

16-17: Safe Edges

• A is a set of edges, which is a subset of some MST

• Cut {S, V − S} which respects A

• Any light edge (with respect to the cut {S, V − S}) is safe

• That is, A ∪ {(u, v)} is a subset of some MST if {(u, v)} is a light edge in a cut that respects A

16-18: Safe Edges

• Proof by contradiction:

• Assume there is:

CS673-2016F-16 Spanning Trees 6

• a subset of a MST A

• a Cut {S, V − S} that respects A

• a light edge (u, v)

• such that A ∪ {(u, v)} is not a subset of any MST

• We will show that this leads to a contradiction

16-19: Safe Edges

• Let A′ be a MST that is a superset of A

• Add (u, v) to A′ to get A′′ – now have a cycle

• This cycle must cross the cut at least twice

• (u, v) is one crossing

• Must be another crossing (u′, v′) back across the cut

• remove (u′, v′) from A′′ to get A′′′

• A′′′ is a spanning tree

• cost(A′′′) = cost(A′) - cost((u′, v′)) + cost((u, v))

• cost((u, v)) ≤ cost((u′, v′)⇒ cost(A′′′) ≤ cost(A′)

16-20: Safe Edges

• Let A′ be a MST that is a superset of A

• Add (u, v) to A′ to get A′′ – now have a cycle

• This cycle must cross the cut at least twice

• Must be another crossing (u′, v′) back across the cut

• remove (u′, v′) from A′′ to get A′′′

• A′′′ is a spanning tree

• cost(A′′′) = cost(A′) - cost((u′, v′)) + cost((u, v))

• cost((u, v)) ≤ cost((u′, v′)⇒ cost(A′′′) ≤ cost(A′)

• Thus A′′′ must be a MST that contains A and {(u, v)}, a contradiction

16-21: Kruskal’s Algorithm

• Start with an empty graph (no edges)

• Sort the edges by cost

• For each edge e (in increasing order of cost)

• Add e to G if it would not cause a cycle

CS673-2016F-16 Spanning Trees 7

16-22: Kruskal’s Algorithm Examples

0 1

2 3 4

5 6

2

4 1 3 10

2 7

5 8 4 6

1

16-23: Kruskal’s Algorithm

• Correctness proof:

• Kruskal’s algorithm always selects a light edge, with according to some cut that respects all edges added

so far.

• Let (u, v) be the cheapest edge that does not cause a cycle

• Let S be the connected component that contains u.

• {S, V − S} respects edges chosen so far

• (u, v) crosses the cut, and is the edge with the smallest cost that crosses the cut ⇒ (u, v) is a light

edge

• Thus, Kruskal’s algorithm always selects a safe edge, and produces a MST

16-24: Kruskal’s Algorithm

• Coding Kruskal’s Algorithm:

• Place all edges into a list

• Sort list of edges by cost

• For each edge in the list

• Select the edge if it does not form a cycle with previously selected edges

• How can we do this?

16-25: Kruskal’s Algorithm

• Determining of adding an edge will cause a cycle

• Start with a forest of V trees (each containing one node)

• Each added edge merges two trees into one tree

• An edge causes a cycle if both vertices are in the same tree

• (examples)

16-26: Kruskal’s Algorithm

• We need to:

• Put each vertex in its own tree

CS673-2016F-16 Spanning Trees 8

• Given any two vertices v1 and v2, determine if they are in the same tree

• Given any two vertices v1 and v2, merge the tree containing v1 and the tree containing v2

• ... sound familiar?

16-27: Kruskal’s Algorithm

• Disjoint sets!

• Create a list of all edges

• Sort list of edges

• For each edge e = (v1, v2) in the list

• if FIND(v1) != FIND(v2)

• Add e to spanning tree

• UNION(v1, v2)

16-28: Kruskal’s Algorithm

• Running time?

16-29: Kruskal’s Algorithm

• Running time?

• Sort edges: Θ(|E| lg |E|)

• Build tree: O(E)

• Total: Θ(|E| lg |E|)

16-30: Prim’s Algorithm

• Grow that spanning tree out from an initial vertex

• Divide the graph into two sets of vertices

• vertices in the spanning tree

• vertices not in the spanning tree

• Initially, Start vertex is in the spanning tree, all other vertices are not in the tree

• Pick the initial vertex arbitrarily

16-31: Prim’s Algorithm

• While there are vertices not in the spanning tree

• Add the cheapest vertex to the spanning tree

CS673-2016F-16 Spanning Trees 9

16-32: Prims’s Algorithm Examples

0 1

2 3 4

5 6

2

4 1 3 10

2 7

5 8 4 6

1

16-33: Prim’s Algorithm

• Maintain a table, which keeps track of:

• Whether or not the vertex has been added to the MST (Known)

• Current cheapest cost to add the vertex to the MST (Cost)

• Neighber to connect to, to get the cheapest cost (Path)

16-34: Prim Code

void Prim(Edge G[], int s, tableEntry T[]) {

int i, v;

Edge e;

for(i=0; i<G.length; i++) {

T[i].distance = Integer.MAX_VALUE;

T[i].path = -1;

T[i].known = false;

}

T[s].distance = 0;

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance > e.cost) {

T[e.neighbor].distance = e.cost;

T[e.neighbor].path = v;

}

}

}

}

16-35: Prim Running Time

• If minUnknownVertex(T) is calculated by doing a linear search through the table:

• Each minUnknownVertex call takes time Θ(|V |)

• Called |V | times – total time for all calls to minUnkownVertex: Θ(|V |2)

• If statement is executed |E| times, each time takes time O(1)

• Total time: O(|V |2 + |E|) = O(|V |2).

16-36: Prim Running Time

• If minUnknownVertex(T) is calculated by inserting all vertices into a min-heap (using distances as key) updating

the heap as the distances are changed

• Each minUnknownVertex call tatkes time Θ(lg |V |)

• Called |V | times – total time for all calls to minUnknownVertex: Θ(|V | lg |V |)

CS673-2016F-16 Spanning Trees 10

• If statement is executed |E| times – each time takes time O(lg |V |), since we need to update (decrement)

keys in heap

• Total time: O(|V | lg |V |+ |E| lg |V |) ∈ O(|E| lg |V |)

• Is this better or wose than the previous method? Explain!

16-37: Prim Running Time

• If minUnknownVertex(T) is calculated by inserting all vertices into a Fibonacci heap (using distances as key)

updating the heap as the distances are changed

• Each minUnknownVertex call takes amortized time Θ(lg |V |)

• Called |V | times – total amortized time for all calls to minUnknownVertex: Θ(|V | lg |V |)

• If statement is executed |E| times – each time takes amortized time O(1), since decrementing keys takes

time O(1).

• Total time: O(|V | lg |V |+ |E|)

• Is this better or wose than the previous methods? Explain!

16-38: Prim Correctness

• Every time we select a vertex as known, pick an edge to add to MST

• If the set of known vertices are K:

• Create a partition {K,V −K}

• Next vertex that we select will be connected to the known vertices by the cheapest possible edge

• Thus, we’re always picking a light edge, according to some partition that repsects all edges we’ve previ-

ously chosen

