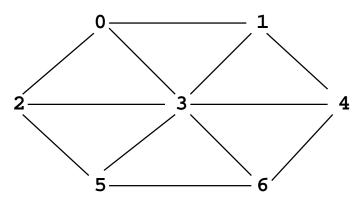
16-0: Spanning Trees

- Given a connected, undirected graph G
 - A subgraph of G contains a subset of the vertices and edges in G
 - A Spanning Tree T of G is:
 - subgraph of G
 - contains all vertices in G
 - connected
 - acyclic

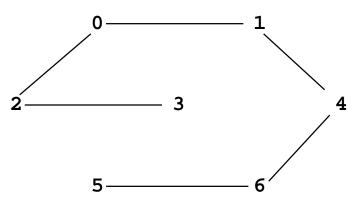
16-1: Spanning Tree Examples

• Graph



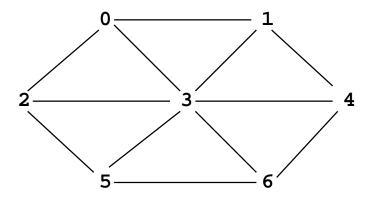
16-2: Spanning Tree Examples

• Spanning Tree

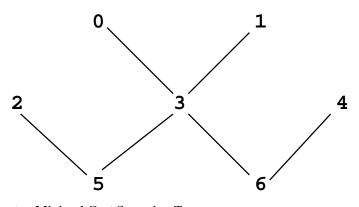


16-3: Spanning Tree Examples

• Graph



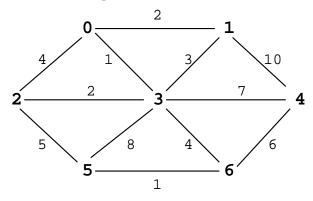
- 16-4: Spanning Tree Examples
 - Spanning Tree



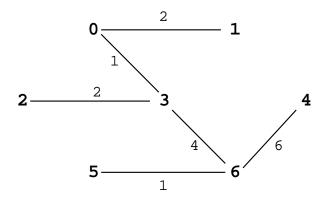
16-5: Minimal Cost Spanning Tree

- Minimal Cost Spanning Tree
 - Given a weighted, undirected graph G
 - Spanning tree of G which minimizes the sum of all weights on edges of spanning tree

16-6: MST Example



16-7: MST Example



16-8: Minimal Cost Spanning Trees

• Can there be more than one minimal cost spanning tree for a particular graph?

16-9: Minimal Cost Spanning Trees

- Can there be more than one minimal cost spanning tree for a particular graph?
- YES!
 - What happens when all edges have unit cost?

16-10: Minimal Cost Spanning Trees

- Can there be more than one minimal cost spanning tree for a particular graph?
- YES!
 - What happens when all edges have unit cost?
 - All spanning trees are MSTs

16-11: Calculating MST

• Generic MST algorithm:

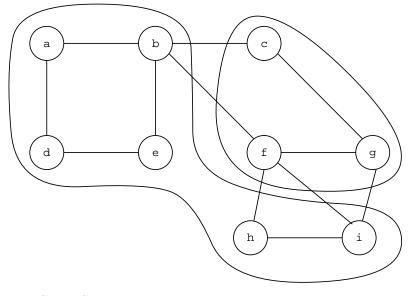
 $A \leftarrow \{\}$ while A does not form a spanning tree find an edge (u, v) that is safe for A $A \leftarrow A \cup \{(u, v)\}$

• (u, v) is safe to for A when $A \cup \{(u, v)\}$ is a subset of some MST

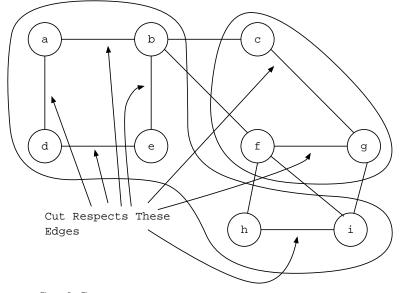
16-12: Graph Cut

- "Cut" of a undirected graph is a partition of the vertices in the graph
 - An edge crosses a cut if the vertices are in different sets of the partition
 - A cut respects a series of edges of no edge crosses the cut
 - light edge is an edge that crosses the cut that has minimum cost

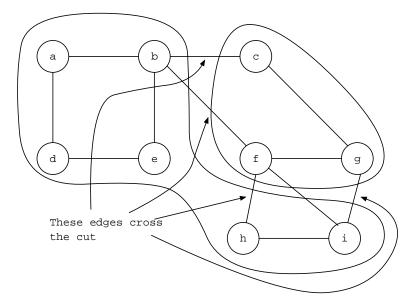
16-13: Graph Cut



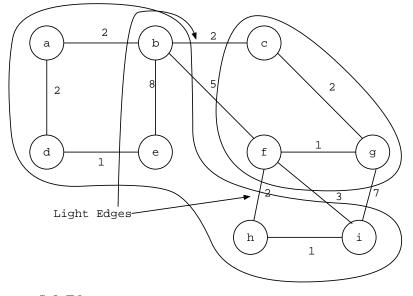
16-14: Graph Cut



16-15: Graph Cut



16-16: Graph Cut



16-17: Safe Edges

- A is a set of edges, which is a subset of some MST
- Cut $\{S, V S\}$ which respects A
- Any light edge (with respect to the cut $\{S, V S\}$) is safe
 - That is, $A \cup \{(u, v)\}$ is a subset of some MST if $\{(u, v)\}$ is a light edge in a cut that respects A

16-18: Safe Edges

- Proof by contradiction:
 - Assume there is:

- a subset of a MST A
- a Cut $\{S, V S\}$ that respects A
- a light edge (u, v)
- such that $A \cup \{(u, v)\}$ is not a subset of any MST
- We will show that this leads to a contradiction

16-19: Safe Edges

- Let A' be a MST that is a superset of A
- Add (u, v) to A' to get A'' now have a cycle
- This cycle must cross the cut at least twice
 - (u, v) is one crossing
 - Must be another crossing (u', v') back across the cut
- remove (u', v') from A'' to get A'''
- A''' is a spanning tree
- $\operatorname{cost}(A''') = \operatorname{cost}(A') \operatorname{cost}((u', v')) + \operatorname{cost}((u, v))$
- $\operatorname{cost}((u, v)) \le \operatorname{cost}((u', v') \Rightarrow \operatorname{cost}(A''') \le \operatorname{cost}(A')$

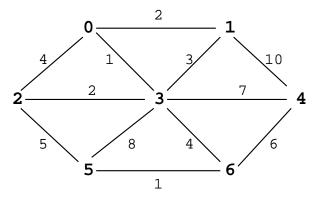
16-20: Safe Edges

- Let A' be a MST that is a superset of A
- Add (u, v) to A' to get A'' now have a cycle
- This cycle must cross the cut at least twice
- Must be another crossing (u', v') back across the cut
- remove (u', v') from A'' to get A'''
- A''' is a spanning tree
- $\operatorname{cost}(A''') = \operatorname{cost}(A') \operatorname{cost}((u', v')) + \operatorname{cost}((u, v))$
- $\operatorname{cost}((u, v)) \le \operatorname{cost}((u', v') \Rightarrow \operatorname{cost}(A''') \le \operatorname{cost}(A')$
- Thus A''' must be a MST that contains A and $\{(u, v)\}$, a contradiction

16-21: Kruskal's Algorithm

- Start with an empty graph (no edges)
- Sort the edges by cost
- For each edge e (in increasing order of cost)
 - Add e to G if it would not cause a cycle

16-22: Kruskal's Algorithm Examples



16-23: Kruskal's Algorithm

- Correctness proof:
 - Kruskal's algorithm always selects a light edge, with according to some cut that respects all edges added so far.
 - Let (u, v) be the cheapest edge that does not cause a cycle
 - Let S be the connected component that contains u.
 - $\{S, V S\}$ respects edges chosen so far
 - (u, v) crosses the cut, and is the edge with the smallest cost that crosses the cut $\Rightarrow (u, v)$ is a light edge
 - Thus, Kruskal's algorithm always selects a safe edge, and produces a MST

16-24: Kruskal's Algorithm

- Coding Kruskal's Algorithm:
 - Place all edges into a list
 - Sort list of edges by cost
 - For each edge in the list
 - Select the edge if it does not form a cycle with previously selected edges
 - How can we do this?

16-25: Kruskal's Algorithm

- Determining of adding an edge will cause a cycle
 - Start with a forest of V trees (each containing one node)
 - Each added edge merges two trees into one tree
 - An edge causes a cycle if both vertices are in the same tree
 - (examples)

16-26: Kruskal's Algorithm

- We need to:
 - Put each vertex in its own tree

- Given any two vertices v_1 and v_2 , determine if they are in the same tree
- Given any two vertices v_1 and v_2 , merge the tree containing v_1 and the tree containing v_2
- ... sound familiar?

16-27: Kruskal's Algorithm

- Disjoint sets!
- Create a list of all edges
- Sort list of edges
- For each edge $e = (v_1, v_2)$ in the list
 - if $FIND(v_1) = FIND(v_2)$
 - Add e to spanning tree
 - UNION (v_1, v_2)

16-28: Kruskal's Algorithm

• Running time?

16-29: Kruskal's Algorithm

- Running time?
 - Sort edges: $\Theta(|E| \lg |E|)$
 - Build tree: O(E)
- Total: $\Theta(|E| \lg |E|)$

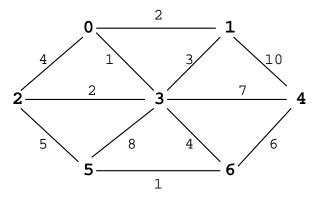
16-30: Prim's Algorithm

- Grow that spanning tree out from an initial vertex
- Divide the graph into two sets of vertices
 - vertices in the spanning tree
 - vertices *not* in the spanning tree
- Initially, Start vertex is in the spanning tree, all other vertices are not in the tree
 - Pick the initial vertex arbitrarily

16-31: Prim's Algorithm

- While there are vertices not in the spanning tree
 - Add the cheapest vertex to the spanning tree

16-32: Prims's Algorithm Examples



16-33: Prim's Algorithm

- Maintain a table, which keeps track of:
 - Whether or not the vertex has been added to the MST (Known)
 - Current cheapest cost to add the vertex to the MST (Cost)
 - Neighber to connect to, to get the cheapest cost (Path)

16-34: Prim Code

```
void Prim(Edge G[], int s, tableEntry T[]) {
    int i, v;
    Edge e;
    for(i=0; iG.length; i++) {
        T[i].distance = Integer.MAX_VALUE;
        T[i].path = -1;
        T[i].known = false;
    }
    T[s].distance = 0;
    for (i=0; i < G.length; i++) {
        v = minUnknownVertex(T);
        T[v].known = true;
        for (e = G[v]; e != null; e = e.next) {
            if (T[e.neighbor].distance > e.cost;
            T[e.neighbor].distance = v;
        }
    }
}
```

16-35: Prim Running Time

- If minUnknownVertex(T) is calculated by doing a linear search through the table:
 - Each minUnknownVertex call takes time $\Theta(|V|)$
 - Called |V| times total time for all calls to minUnkownVertex: $\Theta(|V|^2)$
 - If statement is executed |E| times, each time takes time O(1)
 - Total time: $O(|V|^2 + |E|) = O(|V|^2)$.

16-36: Prim Running Time

- If minUnknownVertex(T) is calculated by inserting all vertices into a min-heap (using distances as key) updating the heap as the distances are changed
 - Each minUnknownVertex call tatkes time $\Theta(\lg |V|)$
 - Called |V| times total time for all calls to minUnknownVertex: $\Theta(|V| \lg |V|)$

- If statement is executed |E| times each time takes time $O(\lg |V|)$, since we need to update (decrement) keys in heap
- Total time: $O(|V| \lg |V| + |E| \lg |V|) \in O(|E| \lg |V|)$
- Is this better or wose than the previous method? Explain!

16-37: Prim Running Time

- If minUnknownVertex(T) is calculated by inserting all vertices into a Fibonacci heap (using distances as key) updating the heap as the distances are changed
 - Each minUnknownVertex call takes amortized time $\Theta(\lg |V|)$
 - Called |V| times total amortized time for all calls to minUnknownVertex: $\Theta(|V| \lg |V|)$
 - If statement is executed |E| times each time takes amortized time O(1), since decrementing keys takes time O(1).
 - Total time: $O(|V| \lg |V| + |E|)$
- Is this better or wose than the previous methods? Explain!

16-38: Prim Correctness

- Every time we select a vertex as known, pick an edge to add to MST
- If the set of known vertices are K:
 - Create a partition $\{K, V K\}$
 - Next vertex that we select will be connected to the known vertices by the cheapest possible edge
 - Thus, we're always picking a light edge, according to some partition that repsects all edges we've previously chosen