
Graduate Algorithms
CS673-2016F-18

Flow Networks

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

18-0: Flow Networks

Directed Graph G

Each edge weigh is a “capacity”

Amount of water/second that can flow through a
pipe, for instance

Single source S, single sink t

Calculate maximum flow through graph

18-1: Flow Networks

Flow: Function: V × V → R

Flow from each vertex to every other vertex

f(u, v) is the direct flow from u to v

Properties:

∀u, v ∈ V, f(u, v) ≤ c(u, v)

∀u, v ∈ V, f(u, v) = −f(v, u)

∀u ∈ V − {s, t},
∑

v∈V f(u, v) = 0

Total flow, |f | =
∑

v∈V f(s, v) =
∑

v∈V f(v, t)

18-2: Flow Networks

Single Source / Single Sink

Assume that there is always a single source
and a single sink

Don’t lost any expressive power – always
transform a problem with multiple sources and
multiple sinks to an equivalent problem with a
single source and a single sink

How?

18-3: Flow Networks

Example: Shipping product to a warehouse

Product produced at a factory, put in crates

Crates are shipped to warehouse

To cut down costs, use “extra space” in other
people’s trucks

How much product can be produced per day?

18-4: Flow Networks

New Jersey

New York

Pitsburgh

Chicago

Dallas

L.A.

16

13

104

12

9

14

7

20

4

18-5: Flow Networks

It would be a little silly to ship 4 crates from Dallas
to Chicago, and 7 crates from Chicago to Dallas

Could just ship 3 crates from Chicago to Dallas
instead

We will assume that there is only every flow in one
direction

Flow in the opposite direction “cancels” out

18-6: Flow Networks

New Jersey

New York

Pitsburgh

Chicago

Dallas

L.A.

11/16

8/13

0/101/4

12/12

4/9

11/14

7/7

15/20

4/4

Is this flow optimal?

18-7: Flow Networks

New Jersey

New York

Pitsburgh

Chicago

Dallas

L.A.

11/16

12/13

0/101/4

12/12

0/9

11/14

7/7

19/20

4/4

18-8: Flow Networks

Negative flow

It is perfectly legal for there to be a negative
flow from v to u

Negative flow from v to u just means that there
is a positive flow from u to v

Recall that the total flow over all edge incident
to a vertex must be zero, except for source &
sink

18-9: Flow Networks

Residual capacity

cf(u, v) is the residual capacity of edge (u, v)

cf(u, v) = c(u, v)− f(u, v)

Note that it is possible for the residual capacity
of an edge to be greater than the total capacity

Cancelling flow in the opposite direction

18-10: Flow Networks

Residual Network

Given a set of capacities, and a set of current
flows, we can create a residual network

Residual network can have different edges than
the capacity network

18-11: Flow Networks

a b

c d

s t

5

6

3

4

1

3
2 6

8

5

18-12: Flow Networks

a b

c d

s t

3/5

3/6

0/3

1/4

0/1

1/3
2/2 0/6

2/8

2/5

18-13: Flow Networks

a b

c d

s t

3/5

3/6

0/3

1/4

0/1

1/3
2/2 0/6

2/8

2/5

a b

c d

s t

3

3

2 1

1

8

6

2

3

2

3

2

1

3

18-14: Flow Networks

Given a flow network, with some flows calculated

Induced residual network

There is a path from source to sink in the residual
network such that:

All residual capacities along the path are > 0

How can we increase the total flow?

18-15: Augmenting Path

An Augmenting path in a flow network is a path
through the network such that all residual
capacities along the path > 0

Given a flow network and an augmenting path, we
can increase the total flow by the smallest residual
capacity along the path

Increase flow along path by smallest residual
capacity along the path

May involve some flow cancelling

18-16: Augmenting Path

a b

c d

s t

3/5

3/6

0/3

1/4

0/1

1/3
2/2 0/6

2/8

2/5

a b

c d

s t

3

3

2 1

1

8

6

2

3

2

3

2

1

3

3

18-17: Augmenting Path

a b

c d

s t

3/5

3/6

0/3

1/4

0/1

1/3
2/2 0/6

2/8

2/5

a b

c d

s t

3

3

2 1

1

8

6

2

3

2

3

2

1

3

3

18-18: Augmenting Path

a b

c d

s t

4/5

4/6

0/3

1/4

1/1

0/3
2/2 0/6

2/8

3/5

a b

c d

s t

4

2

3 0

0

8

6

2

2

3

3

1

1

4

1

18-19: Augmenting Path

a b

c d

s t

4/5

4/6

0/3

1/4

1/1

0/3
2/2 0/6

2/8

3/5

a b

c d

s t

4

2

3

1

8

6

2

2

3

3

1

1

4

3

18-20: Ford-Fulkerson Method

Ford-Fulkerson(G, s, t)
initialize flow f to 0
while there is an augmenting path p

augment flow f along p
return f

18-21: Ford-Fulkerson Method

What is the running time of Ford-Fulkerson
Method?

Find an augmenting path

Update flows / residuals

Repeat until there are no more augmenting
paths

18-22: Ford-Fulkerson Method

What is the running time of Ford-Fulkerson
Method?

Find an augmenting path

Using DFS, O(|E|)

Update flows / residuals
O(|E|)

Repeat until there are no more augmenting
paths

Each iteration could increase the flow by 1,
could have |f | iterations!

Total: O(|f | ∗ |E|)

18-23: Ford-Fulkerson Method

Could take as many as |f | iterations:

s

a

b

t

1000000 1000000

1

1000000 1000000

18-24: Ford-Fulkerson Method

Could take as many as |f | iterations:

s

a

b

t

0/1000000 0/1000000

0/1

0/1000000 0/1000000

s

a

b

t

1000000 1000000

1

1000000 1000000

Flow Network Residual Network

18-25: Ford-Fulkerson Method

Could take as many as |f | iterations:

s

a

b

t

1/1000000 0/1000000

1/1

0/1000000 1/1000000

s

a

b

t

999999 1000000

1

1000000 999999

Flow Network Residual Network

18-26: Ford-Fulkerson Method

Could take as many as |f | iterations:

s

a

b

t

1/1000000 0/1000000

1/1

0/1000000 1/1000000

s

a

b

t

999999 1000000

1

1000000 999999

Flow Network Residual Network

18-27: Ford-Fulkerson Method

Could take as many as |f | iterations:

s

a

b

t

1/1000000 1/1000000

0/1

1/1000000 1/1000000

s

a

b

t

999999 999999

1

999999 999999

Flow Network Residual Network

18-28: Ford-Fulkerson Method

How can we be smart about choosing the
augmenting path, to avoid the previous case?

18-29: Edmonds-Karp Algorithm

How can we be smart about choosing the
augmenting path, to avoid the previous case?

We can get better performance by always
picking the shortest path (path with the fewest
edges)

We can quickly find the shortest path by doing a
BFS from the source in the residual network, to
find the shortest augmenting path

If we always choose the shortest augmenting
path (i.e., smallest number of edges), total

number of iterations is O(|V | ∗ |E|), for a total

running time of O(|V | ∗ |E|2)

18-30: Edmonds-Karp Algorithm

If we always pick the shortest augmenting path, no

more than |V | ∗ |E| iterations:

Lemma #1: Shortest path from source s to any
other vertex in residual graph can only
increase, not decrease.

Residual graph changes over time – edges
are added and removed
However, shortest path from source to any
vertex in the residual graph will only increase
over time, never decrease

18-31: Edmonds-Karp Algorithm

Lemma #1: Shortest path from source s to any
other vertex in residual graph can only increase,
not decrease. Proof by contradiction

Assume shortest path from source to some
other vertex changes after an augmentation

Let f be the flow right before the shortest path
decrease, and f ′ be the flow right after

Let v be a vertex such that δf ′(s, v) < δf(s, v).
If there is more than once such v, pick the one
with the smallest δf ′(s, v) value

Let p = s→ . . .→ u→ v be the shortest path
from s to v in f ′

18-32: Edmonds-Karp Algorithm

Lemma #1: Shortest path from source s to any
other vertex in residual graph can only increase,
not decrease. Proof by contradiction

Edge (u, v) (last edge on path from s to v in
Gf ′) must not be in Gf

δf ′(s, u) ≥ δf(s, u)
• Because δf ′(s, u) < δf ′(s, v), and we

picked v to be the vertex with the smallest
δf ′(s, v) value that changed

If (u, v) ∈ Gf

δf (s, v) ≤ δf (s, u) + 1

≤ δf ′(s, u) + 1

≤ δf ′(s, v)

18-33: Edmonds-Karp Algorithm

Lemma #1: Shortest path from source s to any
other vertex in residual graph can only increase,
not decrease. Proof by contradiction

Edge (u, v) must be in Gf ′ but not in Gf – so

the augmenting path must include (v, u)

We always choose shortest paths as our
augmenting path

Shortest path from s to u must include (v, u)

δf(s, v) = δf(s, u)− 1

≤ δf ′(s, u)− 1

≤ δf ′(s, v)− 2

Contradiction!

18-34: Edmonds-Karp Algorithm

If we always pick the shortest augmenting path, no

more than |V | ∗ |E| iterations:

An edge on an augmenting path is critical if it is
removed when the flow is augmented (why
must there always be at least one critical
edge)?

Each edge can only be critical at most |V |/2
times

18-35: Edmonds-Karp Algorithm

Each edge can only be critical at most |V |/2 times

When edge (u, v) is critical:

δf(s, v) = δf(s, u) + 1

Critical edge is removed – before it can become
critical again, it must be added back by some
augmenting path – that path must contain edge

(u, v)

Let f ′ be the flow when the edge is added back.

δf ′(s, u) = δf ′(s, v) + 1

≥ δf(s, v) + 1

= δf(s, u) + 1 + 1

18-36: Edmonds-Karp Algorithm

Each edge can only be critical at most |V |/2 times

Let f ′ be the flow when the edge is added back.

δf ′(s, u) = δf ′(s, v) + 1

≥ δf(s, v) + 1

= δf(s, u) + 1 + 1

If an edge (u, v) becomes critical twice, the
shortest path from s to u must increase by 2

Each edge can only be critical |V |/2 times

18-37: Edmonds-Karp Algorithm

If we always pick the shortest augmenting path, no

more than |V | ∗ |E| iterations:

An edge on an augmenting path is critical if it is
removed when the flow is augmented (why
must there always be at least one critical
edge)?

Each edge can only be critical at most |V |/2
times

|E| total edges – no more than |E| ∗ |V |/2
iterations

18-38: Matching Problem

Given an undirected graph G = (V,E) a matching
M is

Subset of edges E

For any vertex v ∈ V , at most one edge in M is
incident to v

Maximum matching is a matching with largest
possible number of edges

18-39: Matching Problem

Bipartite graph

Vertices can be divided into two groups, S1 and
S2

Each edge connects a vertex in S1 with a vertex
in S2

18-40: Matching Problem

18-41: Matching Problem

18-42: Matching Problem

18-43: Matching Problem

18-44: Matching Problem

Finding a matching in a bipartite graph can be
considered a maximum flow problem. How?

18-45: Matching Problem

Finding a matching in a bipartite graph can be
considered a maximum flow problem. How?

s t

18-46: Push-Relabel Algorithms

New algorithm for calculating maximum flow

Basic idea:

Allow vertices to be “overfull” (have more inflow
than outflow)

Push full capacity out of edges from source

Push overflow at each vertex forward to the sink

Push excess flow back to source

18-47: Push-Relabel Algorithms

Think of graph as a bunch of water containers
connected by pipes.

We will raise and lower the vertices, and allow
water to flow between them

Water can only flow from higher vertex to a
lower vertex

Initially, source is at height |V |, all other vertices
are at height 1

Full capacity of each pipe out of the source flows to
each vertex adjacent to the source

18-48: Push-Relabel Algorithms

Full capacity of each pipe out of the source flows
back to each vertex adjacent to the source

This causes some vertices to be overfull –
inflow greater than outflow

Raise some vertex whose inflow is greater than
outflow, to allow water to flow to different vertices

Repeat until all vertices (other than the sink, which
stays at level 0) are at the same level as the source

If there are still overfull vertices, continue to raise
them so that the extra flow spills back into the
source

18-49: Push-Relabel Algorithms

a b

c d

s t

4

5

3

5

1

3
2 6

6

2

s a b c d t

H
e
i
g
h
t
s

18-50: Push-Relabel Algorithms

a b

c d

s t

4/4

0/5

0/3

5/5

0/1

0/3

0/2 0/6

0/6

0/2

s a b c d t

H
e
i
g
h
t
s

4 0

05

18-51: Push-Relabel Algorithms

a b

c d

s t

4/4

0/5

0/3

5/5

0/1

0/3

0/2 0/6

0/6

0/2

s a b c d t

H
e
i
g
h
t
s

4 0

05

18-52: Push-Relabel Algorithms

a b

c d

s t

4/4

4/5

0/3

5/5

0/1

0/3

0/2 0/6

0/6

0/2

s a b c d t

H
e
i
g
h
t
s

0 4

05

18-53: Push-Relabel Algorithms

a b

c d

s t

4/4

4/5

0/3

5/5

0/1

0/3

0/2 0/6

0/6

0/2

s a b c d t

H
e
i
g
h
t
s

0 4

05

18-54: Push-Relabel Algorithms

a b

c d

s t

4/4

4/5

0/3

5/5

0/1

0/3

0/2 0/6

4/6

0/2

s a b c d t

H
e
i
g
h
t
s

0 0

05

18-55: Push-Relabel Algorithms

a b

c d

s t

4/4

4/5

0/3

5/5

0/1

0/3

0/2 0/6

4/6

0/2

s a b c d t

H
e
i
g
h
t
s

0 0

05

18-56: Push-Relabel Algorithms

a b

c d

s t

4/4

4/5

0/3

5/5

1/1

0/3

0/2 0/6

4/6

0/2

s a b c d t

H
e
i
g
h
t
s

0 0

14

18-57: Push-Relabel Algorithms

a b

c d

s t

4/4

4/5

0/3

5/5

1/1

0/3

0/2 0/6

4/6

0/2

s a b c d t

H
e
i
g
h
t
s

0 0

14

18-58: Push-Relabel Algorithms

a b

c d

s t

4/4

4/5

0/3

5/5

1/1

3/3

0/2 0/6

4/6

0/2

s a b c d t

H
e
i
g
h
t
s

0 3

11

18-59: Push-Relabel Algorithms

a b

c d

s t

4/4

4/5

1/3

5/5

1/1

3/3

0/2 0/6

4/6

0/2

s a b c d t

H
e
i
g
h
t
s

1 3

10

18-60: Push-Relabel Algorithms

a b

c d

s t

4/4

4/5

1/3

5/5

1/1

3/3

0/2 0/6

4/6

0/2

s a b c d t

H
e
i
g
h
t
s

1 3

10

18-61: Push-Relabel Algorithms

a b

c d

s t

4/4

4/5

1/3

5/5

1/1

3/3

0/2 0/6

4/6

1/2

s a b c d t

H
e
i
g
h
t
s

1 3

00

18-62: Push-Relabel Algorithms

a b

c d

s t

4/4

4/5

1/3

5/5

1/1

3/3

0/2 0/6

4/6

1/2

s a b c d t

H
e
i
g
h
t
s

1 3

00

18-63: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

1/1

3/3

0/2 0/6

4/6

1/2

s a b c d t

H
e
i
g
h
t
s

0 4

00

18-64: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

1/1

3/3

0/2 0/6

6/6

1/2

s a b c d t

H
e
i
g
h
t
s

0 2

00

18-65: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

1/1

3/3

0/2 0/6

6/6

1/2

s a b c d t

H
e
i
g
h
t
s

0 2

00

18-66: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

1/1

3/3

2/2 0/6

6/6

1/2

s a b c d t

H
e
i
g
h
t
s

0 0

20

18-67: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

1/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

0 0

10

18-68: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

1/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

0 0

10

18-69: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

0/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

0 0

01

18-70: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

0/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

0 0

01

18-71: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

2/3

5/5

0/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

1 0

00

18-72: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

2/3

5/5

0/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

1 0

00

18-73: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

0/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

0 0

01

18-74: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

0/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

0 0

01

18-75: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

1/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

0 0

10

18-76: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

1/1

3/3

1/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

0 1

00

18-77: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

1/1

3/3

1/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

0 1

00

18-78: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

1/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

0 0

10

18-79: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

1/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

0 0

10

18-80: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

0/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

0 0

01

18-81: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

5/5

0/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

0 0

01

18-82: Push-Relabel Algorithms

a b

c d

s t

4/4

5/5

1/3

4/5

0/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

0 0

00

18-83: Push-Relabel Algorithms

Push(u, v)
Applies when:

u is overflowing
cf(u, v) > 0
h[u] = h[v] + 1

Action:
Push min(overflow[u],cf(u, v)) to v

18-84: Push-Relabel Algorithms

Relabel(u)
Applies when:

u is overflowing
For all v such that cf(u, v) > 0

h[v] ≥ h[u]
Action:

h[u]← h[u] + 1

18-85: Push-Relabel Algorithms

Push-Relabel(G)
Initialize-Preflow(G, s)
while there exists an applicable push/relabel

implement push/relabel

18-86: Push-Relabel Algorithms

Push-Relabel(G)
Initialize-Preflow(G, s)
while there exists an applicable push/relabel

implement push/relabel

Pick the operations (push/relabel) arbitrarily, time is

O(|V |2E)

(We won’t prove this result, though the proof is
in the book)

Can do better with relabel-to-front

Specific ordering for doing push-relabel

Time O(|V |3), also not proven here, proof in
text

	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Flow Networksaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Augmenting Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ford-Fulkerson Methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Edmonds-Karp Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matching Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Push-Relabel Algorithmsaddtocounter {blocknumber}{1}

