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18-0: Flow Networks

• Directed Graph G

• Each edge weigh is a “capacity”

• Amount of water/second that can flow through a pipe, for instance

• Single source S, single sink t

• Calculate maximum flow through graph

18-1: Flow Networks

• Flow: Function: V × V → R

• Flow from each vertex to every other vertex

• f(u, v) is the direct flow from u to v

• Properties:

• ∀u, v ∈ V, f(u, v) ≤ c(u, v)

• ∀u, v ∈ V, f(u, v) = −f(v, u)

• ∀u ∈ V − {s, t},
∑

v∈V f(u, v) = 0

• Total flow, |f | =
∑

v∈V f(s, v) =
∑

v∈V f(v, t)

18-2: Flow Networks

• Single Source / Single Sink

• Assume that there is always a single source and a single sink

• Don’t lost any expressive power – always transform a problem with multiple sources and multiple sinks to

an equivalent problem with a single source and a single sink

• How?

18-3: Flow Networks

• Example: Shipping product to a warehouse

• Product produced at a factory, put in crates

• Crates are shipped to warehouse

• To cut down costs, use “extra space” in other people’s trucks

• How much product can be produced per day?

18-4: Flow Networks
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18-5: Flow Networks
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• It would be a little silly to ship 4 crates from Dallas to Chicago, and 7 crates from Chicago to Dallas

• Could just ship 3 crates from Chicago to Dallas instead

• We will assume that there is only every flow in one direction

• Flow in the opposite direction “cancels” out

18-6: Flow Networks
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Is this flow optimal?

18-7: Flow Networks
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18-8: Flow Networks

• Negative flow

• It is perfectly legal for there to be a negative flow from v to u

• Negative flow from v to u just means that there is a positive flow from u to v

• Recall that the total flow over all edge incident to a vertex must be zero, except for source & sink

18-9: Flow Networks

• Residual capacity

• cf (u, v) is the residual capacity of edge (u, v)

• cf (u, v) = c(u, v)− f(u, v)

• Note that it is possible for the residual capacity of an edge to be greater than the total capacity

• Cancelling flow in the opposite direction

18-10: Flow Networks
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• Residual Network

• Given a set of capacities, and a set of current flows, we can create a residual network

• Residual network can have different edges than the capacity network

18-11: Flow Networks
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18-12: Flow Networks
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18-13: Flow Networks
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18-14: Flow Networks

• Given a flow network, with some flows calculated

• Induced residual network

• There is a path from source to sink in the residual network such that:

• All residual capacities along the path are > 0

• How can we increase the total flow?

18-15: Augmenting Path

• An Augmenting path in a flow network is a path through the network such that all residual capacities along the

path > 0

• Given a flow network and an augmenting path, we can increase the total flow by the smallest residual capacity

along the path

• Increase flow along path by smallest residual capacity along the path

• May involve some flow cancelling

18-16: Augmenting Path
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18-17: Augmenting Path
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18-18: Augmenting Path
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18-19: Augmenting Path
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18-20: Ford-Fulkerson Method

Ford-Fulkerson(G, s, t)
initialize flow f to 0

while there is an augmenting path p
augment flow f along p

return f

18-21: Ford-Fulkerson Method

• What is the running time of Ford-Fulkerson Method?

• Find an augmenting path
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• Update flows / residuals

• Repeat until there are no more augmenting paths

18-22: Ford-Fulkerson Method

• What is the running time of Ford-Fulkerson Method?

• Find an augmenting path

• Using DFS, O(|E|)

• Update flows / residuals

• O(|E|)

• Repeat until there are no more augmenting paths

• Each iteration could increase the flow by 1, could have |f | iterations!

• Total: O(|f | ∗ |E|)

18-23: Ford-Fulkerson Method

• Could take as many as |f | iterations:
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18-24: Ford-Fulkerson Method

• Could take as many as |f | iterations:
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18-25: Ford-Fulkerson Method
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• Could take as many as |f | iterations:
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18-26: Ford-Fulkerson Method

• Could take as many as |f | iterations:
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18-27: Ford-Fulkerson Method

• Could take as many as |f | iterations:

s

a

b

t

1/1000000 1/1000000

0/1

1/1000000 1/1000000

s

a

b

t

999999 999999

1

999999 999999

Flow Network Residual Network

18-28: Ford-Fulkerson Method

• How can we be smart about choosing the augmenting path, to avoid the previous case?

18-29: Edmonds-Karp Algorithm

• How can we be smart about choosing the augmenting path, to avoid the previous case?

• We can get better performance by always picking the shortest path (path with the fewest edges)
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• We can quickly find the shortest path by doing a BFS from the source in the residual network, to find the

shortest augmenting path

• If we always choose the shortest augmenting path (i.e., smallest number of edges), total number of itera-

tions is O(|V | ∗ |E|), for a total running time of O(|V | ∗ |E|2)

18-30: Edmonds-Karp Algorithm

• If we always pick the shortest augmenting path, no more than |V | ∗ |E| iterations:

• Lemma #1: Shortest path from source s to any other vertex in residual graph can only increase, not

decrease.

• Residual graph changes over time – edges are added and removed

• However, shortest path from source to any vertex in the residual graph will only increase over time,

never decrease

18-31: Edmonds-Karp Algorithm

• Lemma #1: Shortest path from source s to any other vertex in residual graph can only increase, not decrease.

Proof by contradiction

• Assume shortest path from source to some other vertex changes after an augmentation

• Let f be the flow right before the shortest path decrease, and f ′ be the flow right after

• Let v be a vertex such that δf ′(s, v) < δf (s, v). If there is more than once such v, pick the one with the

smallest δf ′(s, v) value

• Let p = s→ . . .→ u→ v be the shortest path from s to v in f ′

18-32: Edmonds-Karp Algorithm

• Lemma #1: Shortest path from source s to any other vertex in residual graph can only increase, not decrease.

Proof by contradiction

• Edge (u, v) (last edge on path from s to v in Gf ′ ) must not be in Gf

• δf ′(s, u) ≥ δf (s, u)

• Because δf ′(s, u) < δf ′(s, v), and we picked v to be the vertex with the smallest δf ′(s, v) value

that changed

• If (u, v) ∈ Gf

δf (s, v) ≤ δf (s, u) + 1

≤ δ
f′ (s, u) + 1

≤ δ
f′ (s, v)

18-33: Edmonds-Karp Algorithm

• Lemma #1: Shortest path from source s to any other vertex in residual graph can only increase, not decrease.

Proof by contradiction

• Edge (u, v) must be in Gf ′ but not in Gf – so the augmenting path must include (v, u)

• We always choose shortest paths as our augmenting path

• Shortest path from s to u must include (v, u)

δf (s, v) = δf(s, u)− 1

≤ δf ′(s, u)− 1

≤ δf ′(s, v)− 2
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• Contradiction!

18-34: Edmonds-Karp Algorithm

• If we always pick the shortest augmenting path, no more than |V | ∗ |E| iterations:

• An edge on an augmenting path is critical if it is removed when the flow is augmented (why must there

always be at least one critical edge)?

• Each edge can only be critical at most |V |/2 times

18-35: Edmonds-Karp Algorithm

• Each edge can only be critical at most |V |/2 times

• When edge (u, v) is critical:

• δf (s, v) = δf (s, u) + 1

• Critical edge is removed – before it can become critical again, it must be added back by some augmenting

path – that path must contain edge (u, v)

• Let f ′ be the flow when the edge is added back.

δf ′(s, u) = δf ′(s, v) + 1

≥ δf (s, v) + 1

= δf (s, u) + 1 + 1

• If an edge (u, v) becomes critical twice, the shortest path from s to u must increase by 2

• Each edge can only be critical |V |/2 times

18-36: Edmonds-Karp Algorithm

• Each edge can only be critical at most |V |/2 times

• Let f ′ be the flow when the edge is added back.

δf ′(s, u) = δf ′(s, v) + 1

≥ δf (s, v) + 1

= δf (s, u) + 1 + 1

• If an edge (u, v) becomes critical twice, the shortest path from s to u must increase by 2

• Each edge can only be critical |V |/2 times

18-37: Edmonds-Karp Algorithm

• If we always pick the shortest augmenting path, no more than |V | ∗ |E| iterations:

• An edge on an augmenting path is critical if it is removed when the flow is augmented (why must there

always be at least one critical edge)?

• Each edge can only be critical at most |V |/2 times

• |E| total edges – no more than |E| ∗ |V |/2 iterations
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18-38: Matching Problem

• Given an undirected graph G = (V,E) a matching M is

• Subset of edges E

• For any vertex v ∈ V , at most one edge in M is incident to v

• Maximum matching is a matching with largest possible number of edges

18-39: Matching Problem

• Bipartite graph

• Vertices can be divided into two groups, S1 and S2

• Each edge connects a vertex in S1 with a vertex in S2

18-40: Matching Problem

18-41: Matching Problem
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18-42: Matching Problem

18-43: Matching Problem
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18-44: Matching Problem

• Finding a matching in a bipartite graph can be considered a maximum flow problem. How?

18-45: Matching Problem

• Finding a matching in a bipartite graph can be considered a maximum flow problem. How?

s t

18-46: Push-Relabel Algorithms
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• New algorithm for calculating maximum flow

• Basic idea:

• Allow vertices to be “overfull” (have more inflow than outflow)

• Push full capacity out of edges from source

• Push overflow at each vertex forward to the sink

• Push excess flow back to source

18-47: Push-Relabel Algorithms

• Think of graph as a bunch of water containers connected by pipes.

• We will raise and lower the vertices, and allow water to flow between them

• Water can only flow from higher vertex to a lower vertex

• Initially, source is at height |V |, all other vertices are at height 1

• Full capacity of each pipe out of the source flows to each vertex adjacent to the source

18-48: Push-Relabel Algorithms

• Full capacity of each pipe out of the source flows back to each vertex adjacent to the source

• This causes some vertices to be overfull – inflow greater than outflow

• Raise some vertex whose inflow is greater than outflow, to allow water to flow to different vertices

• Repeat until all vertices (other than the sink, which stays at level 0) are at the same level as the source

• If there are still overfull vertices, continue to raise them so that the extra flow spills back into the source

18-49: Push-Relabel Algorithms
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18-50: Push-Relabel Algorithms
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18-51: Push-Relabel Algorithms
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18-52: Push-Relabel Algorithms
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18-53: Push-Relabel Algorithms
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18-54: Push-Relabel Algorithms



CS673-2016F-18 Flow Networks 17

a b

c d

s t

4/4

4/5

0/3

5/5

0/1

0/3

0/2 0/6

4/6

0/2

s a b c d t

H
e
i
g
h
t
s

0 0

05

18-55: Push-Relabel Algorithms
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18-56: Push-Relabel Algorithms
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18-57: Push-Relabel Algorithms
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18-58: Push-Relabel Algorithms
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18-59: Push-Relabel Algorithms
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18-60: Push-Relabel Algorithms
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18-61: Push-Relabel Algorithms
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18-62: Push-Relabel Algorithms
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18-63: Push-Relabel Algorithms
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18-64: Push-Relabel Algorithms
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18-65: Push-Relabel Algorithms
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18-66: Push-Relabel Algorithms
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18-67: Push-Relabel Algorithms
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18-68: Push-Relabel Algorithms
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18-69: Push-Relabel Algorithms
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18-70: Push-Relabel Algorithms
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18-71: Push-Relabel Algorithms
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18-72: Push-Relabel Algorithms



CS673-2016F-18 Flow Networks 26

a b

c d

s t

4/4

5/5

2/3

5/5

0/1

3/3

2/2 0/6

6/6

2/2

s a b c d t

H
e
i
g
h
t
s

1 0

00

18-73: Push-Relabel Algorithms
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18-74: Push-Relabel Algorithms
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18-75: Push-Relabel Algorithms
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18-76: Push-Relabel Algorithms
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18-77: Push-Relabel Algorithms
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18-78: Push-Relabel Algorithms
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18-79: Push-Relabel Algorithms
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18-80: Push-Relabel Algorithms
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18-81: Push-Relabel Algorithms
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18-82: Push-Relabel Algorithms
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18-83: Push-Relabel Algorithms

Push(u, v)

Applies when:

u is overflowing

cf (u, v) > 0
h[u] = h[v] + 1

Action:

Push min(overflow[u],cf(u, v)) to v

18-84: Push-Relabel Algorithms

Relabel(u)

Applies when:

u is overflowing

For all v such that cf (u, v) > 0
h[v] ≥ h[u]

Action:

h[u]← h[u] + 1

18-85: Push-Relabel Algorithms

Push-Relabel(G)

Initialize-Preflow(G, s)

while there exists an applicable push/relabel

implement push/relabel

18-86: Push-Relabel Algorithms

Push-Relabel(G)

Initialize-Preflow(G, s)
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while there exists an applicable push/relabel

implement push/relabel

• Pick the operations (push/relabel) arbitrarily, time is O(|V |2E)

• (We won’t prove this result, though the proof is in the book)

• Can do better with relabel-to-front

• Specific ordering for doing push-relabel

• Time O(|V |3), also not proven here, proof in text


