Graduate Algorithms CS673-2016F-19 Computational Geometry

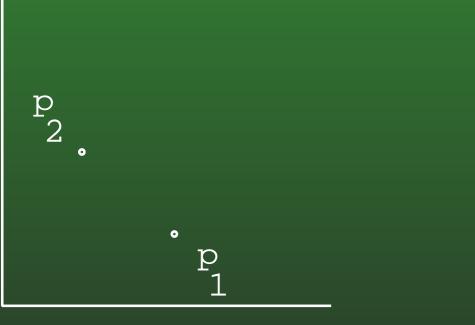
David Galles

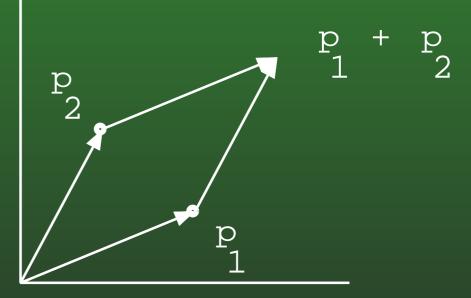
Department of Computer Science University of San Francisco Given any two points p₁ = (x₁, y₁) and p₂ = (x₂, y₂)
Cross Product: p₁ × p₂ = x₁y₂ - x₂y₁

$$p_1 \times p_2 = x_1 y_2 - x_2 y_1 = -1 * (x_2 y_1 - x_1 y_2) = -p_2 \times p_1$$

19-1: Cross Products

• Cross Product $p_1 \times p_2$ as Signed Area



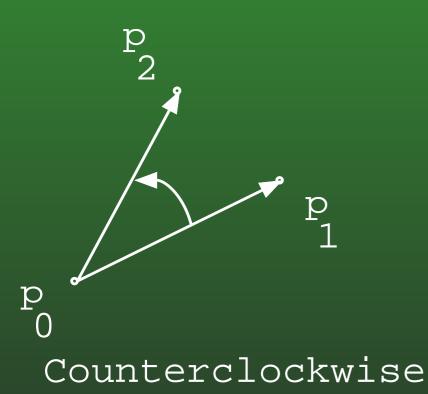


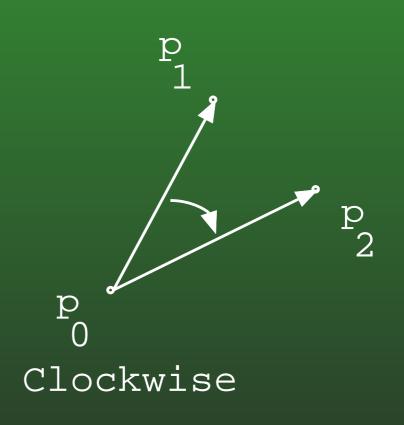
- Area is positive if p_1 is "below" p_2
- Area is negative if p_1 is "above" p_2

19-2: Cross Products

- Given two vectors that share an origin:
 - $\overrightarrow{p_0p_1}$ and $\overrightarrow{p_0p_2}$
- Is $\overrightarrow{p_0p_2}$ clockwise or counterclockwise relative to $\overrightarrow{p_0p_2}$?

19-3: Cross Products



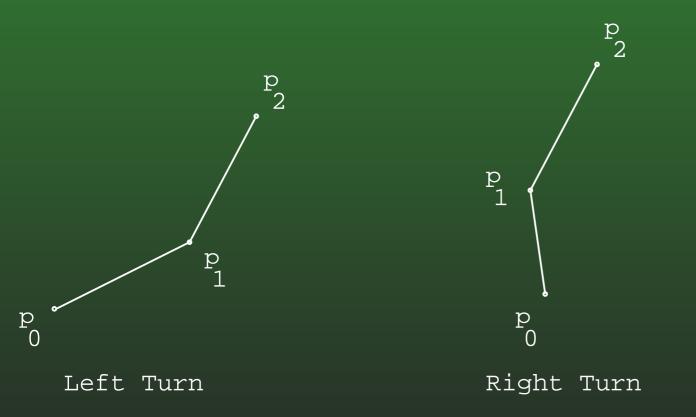


19-4: Cross Products

- Given two vectors that share an origin:
 - $\overrightarrow{p_0p_1}$ and $\overrightarrow{p_0p_2}$
- Is $\overrightarrow{p_0p_2}$ clockwise or counterclockwise relative to $\overrightarrow{p_0p_2}$?
 - $(p_1 p_0) \times (p_2 p_0)$ is positive, $\overrightarrow{p_0 p_2}$ is counterclockwise from $\overrightarrow{p_0 p_1}$

19-5: Cross Products

• Given two line segments $\overline{p_0p_1}$ and $\overline{p_1p_2}$, which direction does angle $\angle p_0p_1p_2$ turn?



19-6: Cross Products

- Given two line segments $\overline{p_0p_1}$ and $\overline{p_1p_2}$, which direction does angle $\angle p_0p_1p_2$ turn?
 - $(p_2 p_0) \times (p_1 p_0)$ is positive, left turn
 - $(p_2 p_0) \times (p_1 p_0)$ is negative, right turn
 - $(p_2 p_0) \times (p_1 p_0)$ is zero, no turn (colinear)

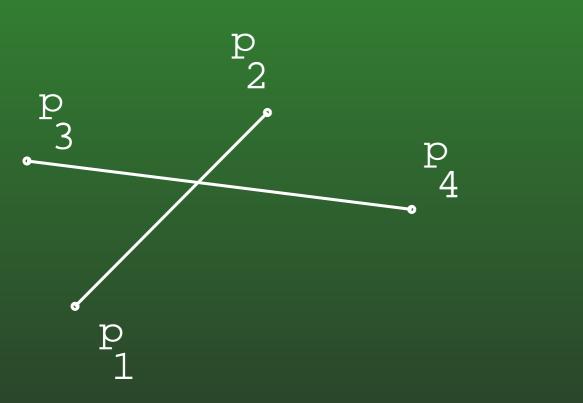
19-7: Line Segment Intersection

- Given two line segments $\overline{p_1p_2}$ and $\overline{p_3p_4}$, do they intersect?
 - How could we determine this?

19-8: Line Segment Intersection

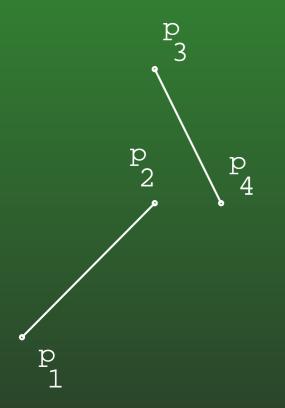
- Given two line segments $\overline{p_1p_2}$ and $\overline{p_3p_4}$, do they intersect?
 - Each segment straddles the line containing the other
 - An endpoint of one segment lies on the other segment

19-9: Line Segment Intersection



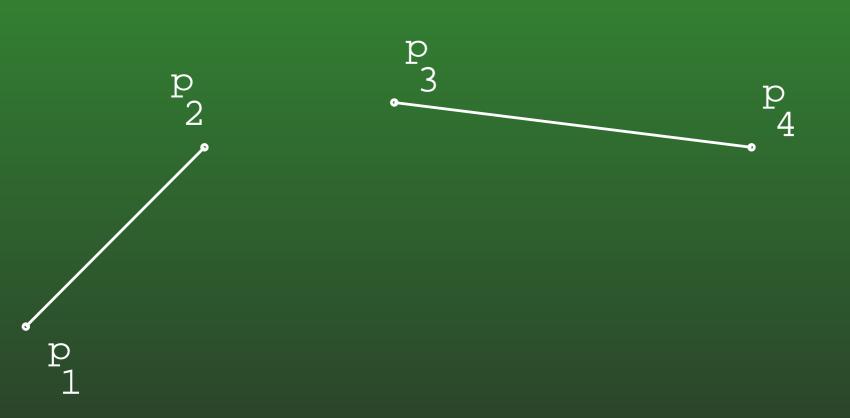
- p_3 and p_4 straddle line defined by p_1 and p_2
- p_1 and p_2 straddle line defined by p_3 and p_4

19-10: Line Segment Intersection



- p_3 and p_4 straddle line defined by p_1 and p_2
- p_1 and p_2 do not straddle line defined by p_3 and p_4

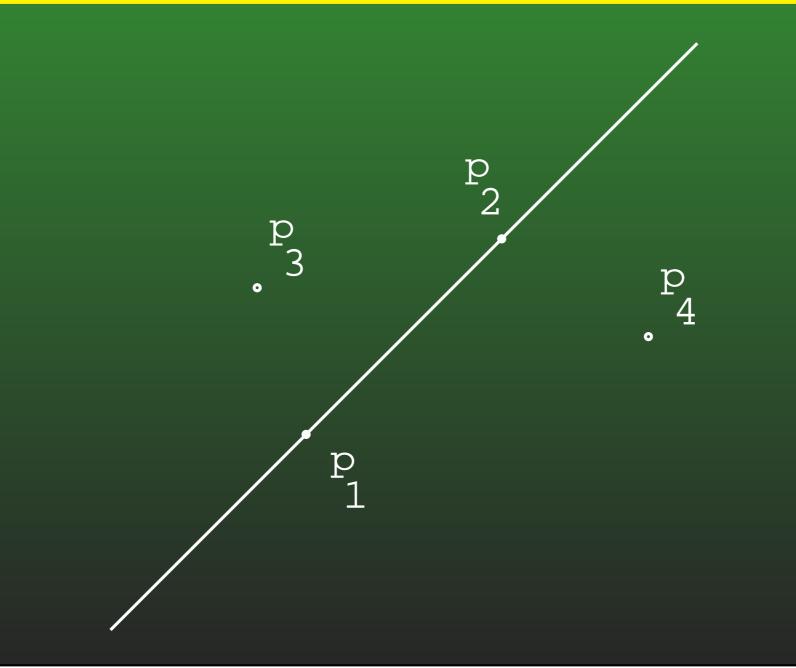
19-11: Line Segment Intersection



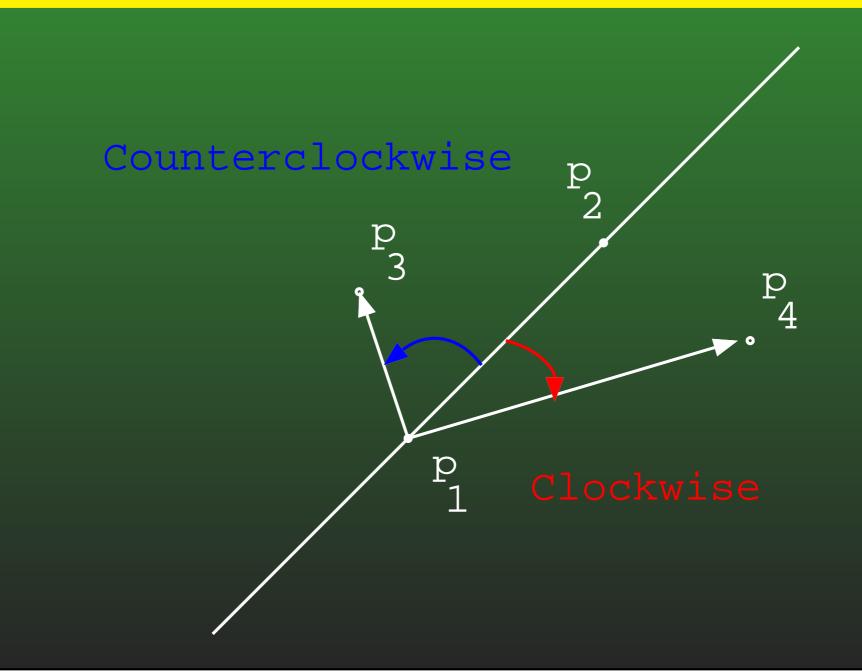
• p_3 and p_4 do not straddle line defined by p_1 and p_2

• p_1 and p_2 do not straddle line defined by p_3 and p_4

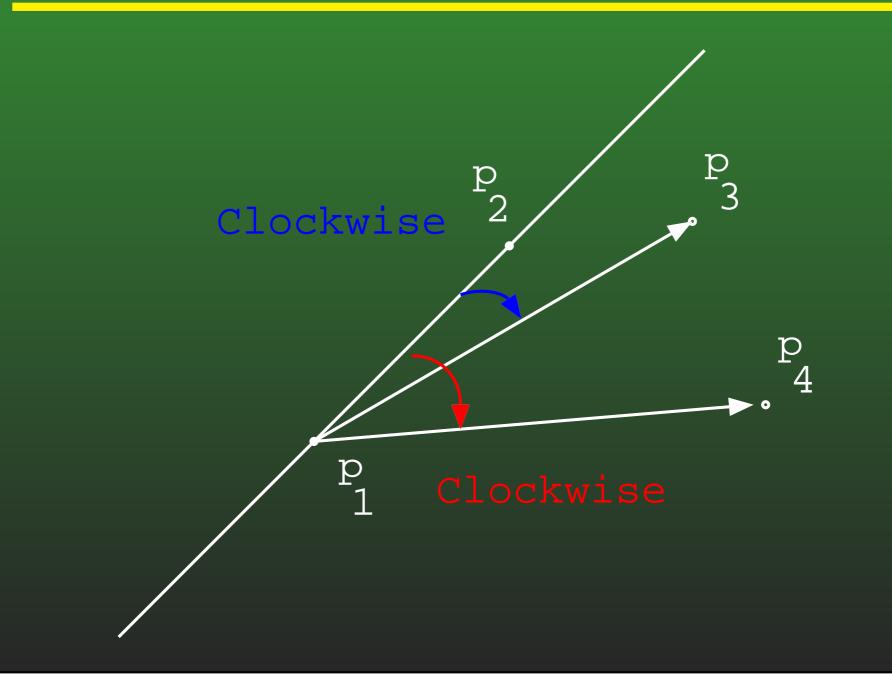
19-12: Line Segment Intersection



19-13: Line Segment Intersection



19-14: Line Segment Intersection



19-15: Line Segment Intersection

- p_3 and p_4 straddle line define by p_1 and p_2 if:
 - $\overrightarrow{p_1p_3}$ is counterclockwise of $\overrightarrow{p_1p_2}$ and $\overrightarrow{p_1p_4}$ is clockwise of $\overrightarrow{p_1p_2}$
 - $(p_2 p_1) \times (p_3 p_1) > 0$ and $(p_2 - p_1) \times (p_4 - p_1) < 0$
 - $\overrightarrow{p_1p_3}$ is clockwise of $\overrightarrow{p_1p_2}$ and $\overrightarrow{p_1p_4}$ is counterclockwise of $\overrightarrow{p_1p_2}$
 - $(p_2 p_1) \times (p_3 p_1) < 0$ and $(p_2 p_1) \times (p_4 p_1) > 0$

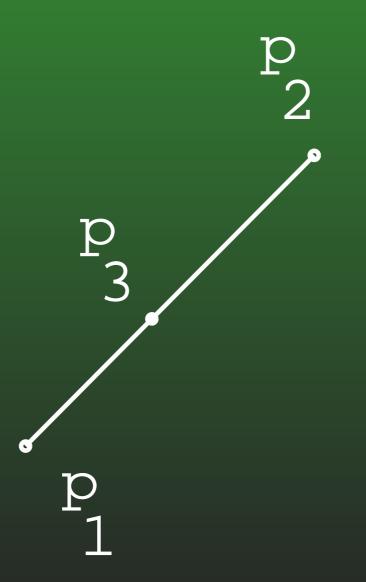
19-16: Line Segment Intersection

- How can we determine if p_3 is on the segment $\overline{p_1p_2}$?

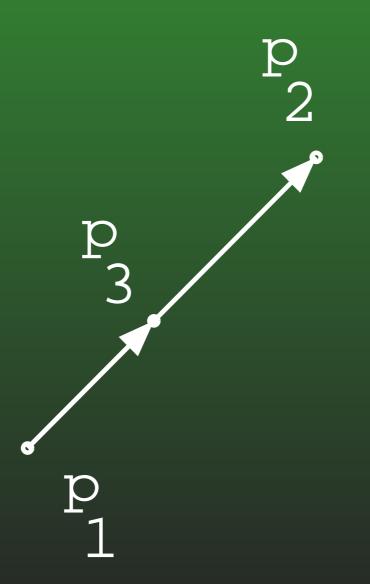
19-17: Line Segment Intersection

- How can we determine if p_3 is on the segment $\overline{p_1p_2}$?
 - p_3 is on the line defined by p_1 and p_2
 - p_3 is in the proper range along that line

19-18: Line Segment Intersection



19-19: Line Segment Intersection



19-20: Line Segment Intersection

- How can we determine if p_3 is on the segment $\overline{p_1p_2}$?
 - p_3 is on the line defined by p_1 and p_2
 - $(p_2 p_1) \times (p_3 p_1) = 0$
 - p_3 is in the proper range along that line
 - $p_{3x} \ge p_{1x} \&\& \&p_{3x} \le p_{2x}$ or $p_{3x} \le p_{1x} \&\& \&p_{3x} \ge p_{2x}$
 - $p_{3y} \ge p_{1y} \&\& p_{3y} \le p_{2y}$ or $p_{3y} \le p_{1y} \&\& p_{3y} \ge p_{2y}$

19-21: Line Segment Intersection

- Given a set of *n* line segments, do any of them intersect?
 - What is a brute force method for solving this problem?
 - How long does it take (if there are *n* total line segments)

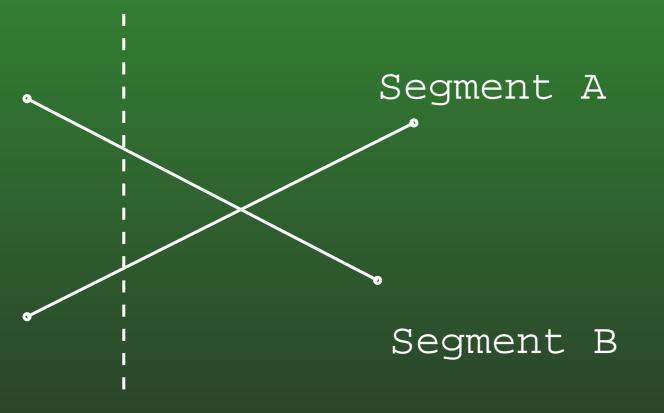
19-22: Line Segment Intersection

- Given a set of *n* line segments, do any of them intersect?
 - What is a brute force method for solving this problem?
 - Check each pair of line segments, see if they intersect using the previous technique
 - How long does it take (if there are *n* total line segments)
 - Each of the n segments needs to be comparted to n-1 other segments, for a total time of ${\cal O}(n^2)$
 - We can do better!

19-23: Line Segment Intersection

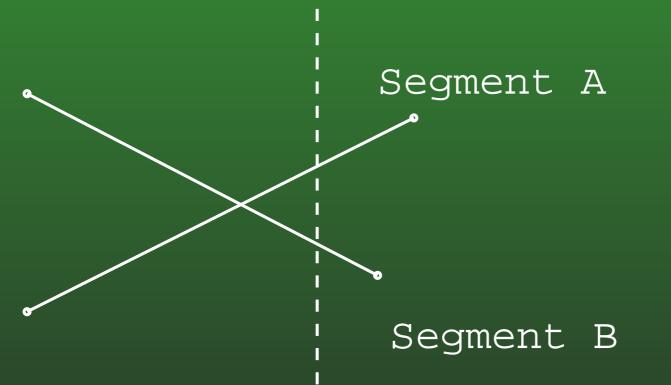
- Basic idea:
 - Assume that there are no vertical line segments
 - Sweep a vertical line across the segments
 - Segment *A* is above segment *B* at the line, and as we move the line to the right, Segment *B* becomes above Segment *A*, then the segments have crossed

19-24: Line Segment Intersection



Segment B is above Segment A¹

19-25: Line Segment Intersection



- Segment *A* is above Segment *B*
- The two segments must have crossed

19-26: Line Segment Intersection

- Maintain an ordered list of the segments that intersect with the current sweep line
- Whenever two segments become adjacent on this list, check to see if they intersect
- Only need to check endpoints of segments

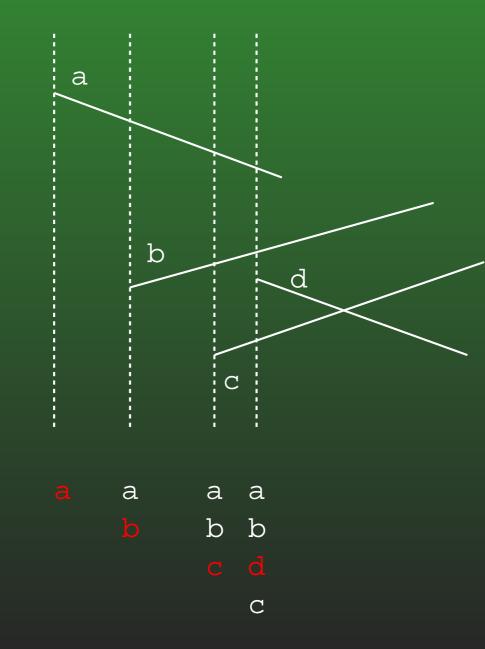
19-27: Line Segment Intersection

- Maintian a data structure that lets us:
 - Insert a segment s into T
 - Delete a segment \boldsymbol{s} from \boldsymbol{T}
 - Find the segment above s in T
 - Find the segment below \boldsymbol{s} in \boldsymbol{T}
- Use a red-black tree, using cross products to see if segment 1 is above segment 2 at a certain point

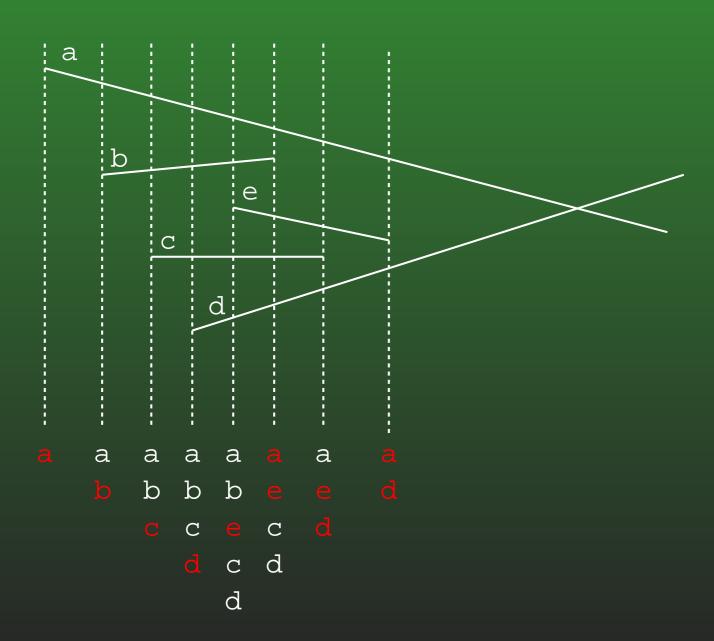
19-28: Line Segment Intersection

Sort endpoints of segments from left to right Break ties: Left endpoints before right endpoints lowest *y*-coordinate first for each point p in endpoint list if p is the left endpoint of a segment s Insert s into Tif there is a segment above s in T that intersects sor a segment below s in T that intersects sreturn true if p is the right endpoint of a segment s if there is a segment above s and below s in Tand these segments intersect return true Delete s from Treturn false

19-29: Convex Hull



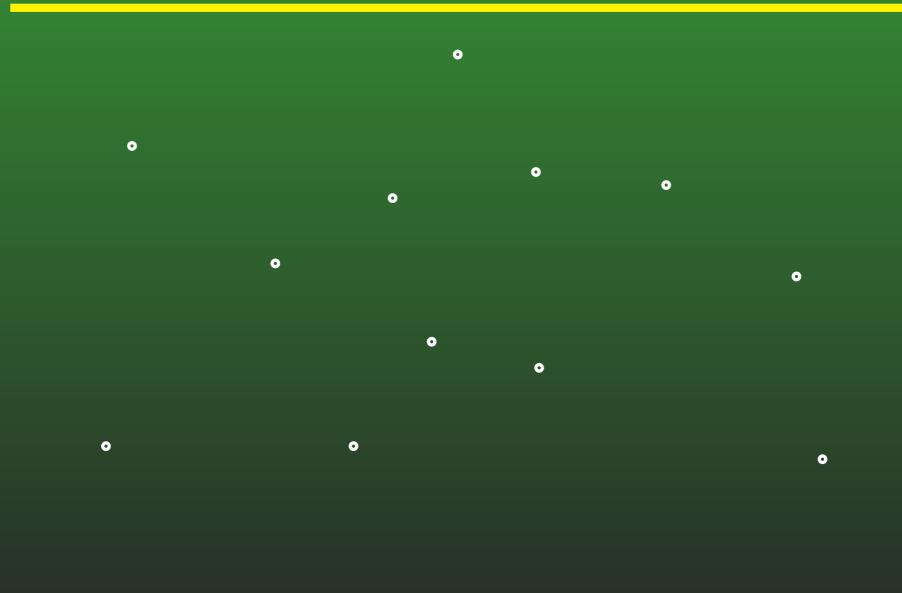
19-30: Convex Hull



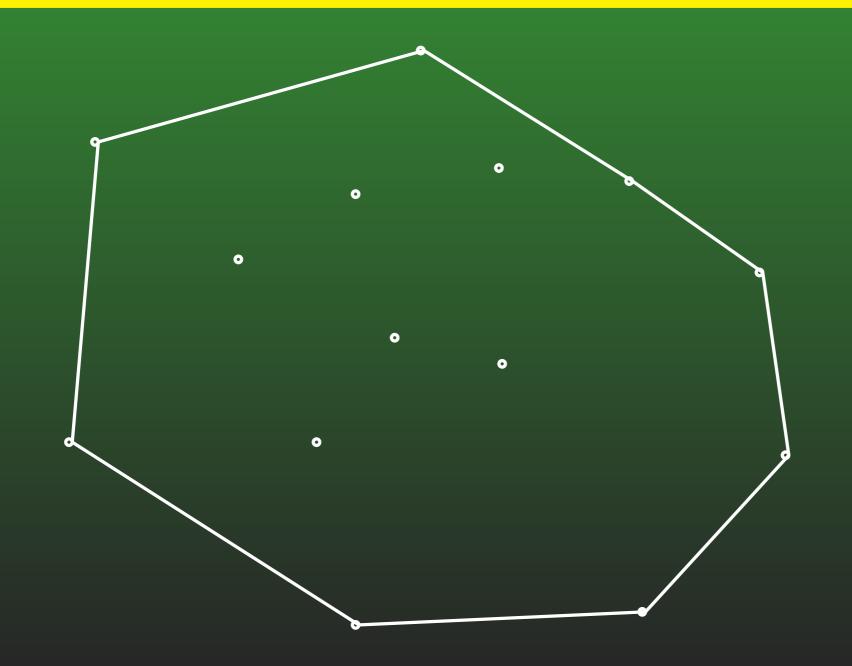
19-31: Convex Hull

- Given a set of points, what is the smallest convex polygon that contains all points
- Alternately, if all of the points were nails in a board, and we placed a rubber band around all of them, what shape would it form?

19-32: Convex Hull



19-33: Convex Hull



19-34: Convex Hull

- Several computational geometry problems have finding the convex hull as a subproblem
 - Like many graph algorithms have finding a topological sort as a subproblem
- For instance: Finding the two furthest points
 - Must lie on the convex hull

19-35: Convex Hull

- Graham's Scan Algorithm
 - Go through all the points in order
 - Push points onto a stack
 - Pop off points that don't form part of the convex hull
 - When we're done, stack contains the points in the convex hull

Gram-Scan

Let p_0 be the point with the minimum *y*-coordinate Sort the points by increasing polar angle around p_0 Push p_0 , p_1 , and p_2 on the stack Sfor $i \leftarrow 3$ to n do while angle formed by top two points on Sdoesn't turn left do Pop Push (p_i)

return S

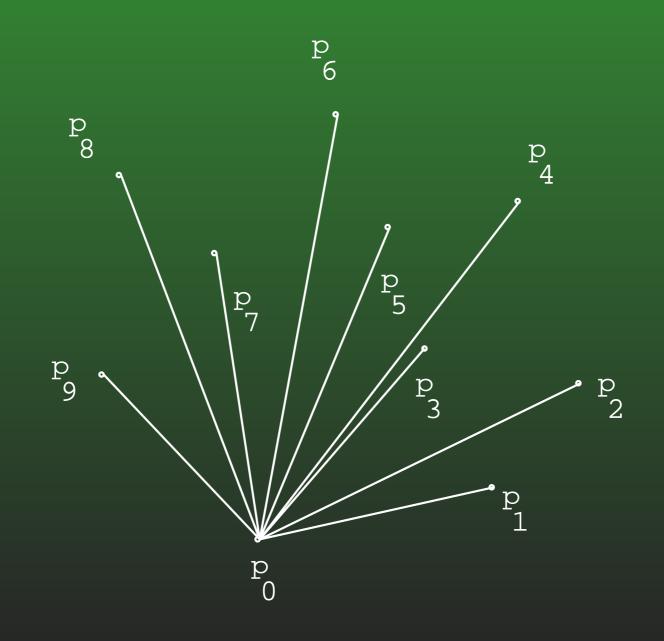
19-37: Graham's Scan

o

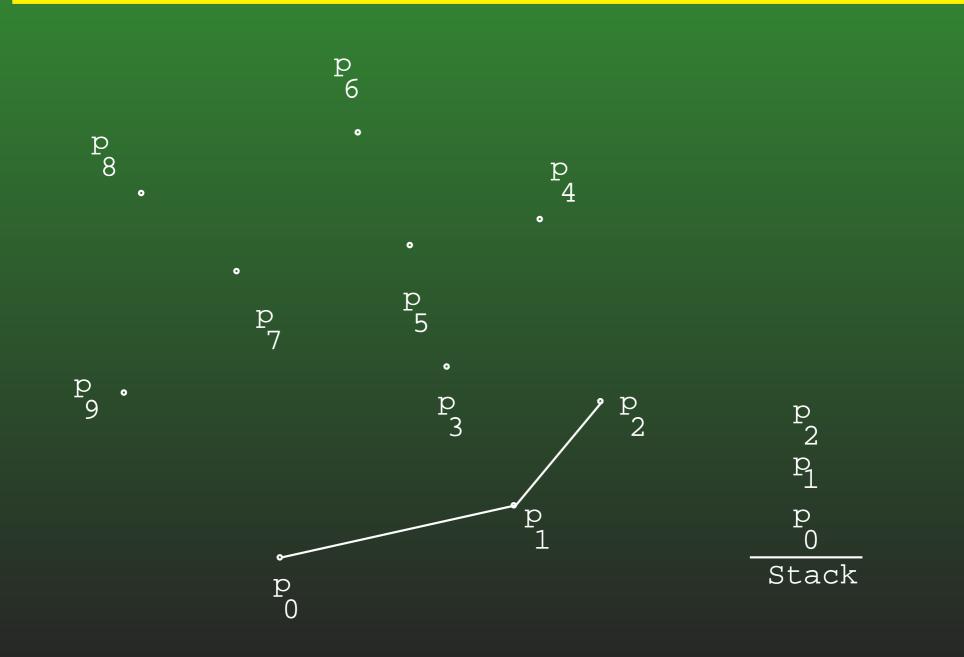
°

•

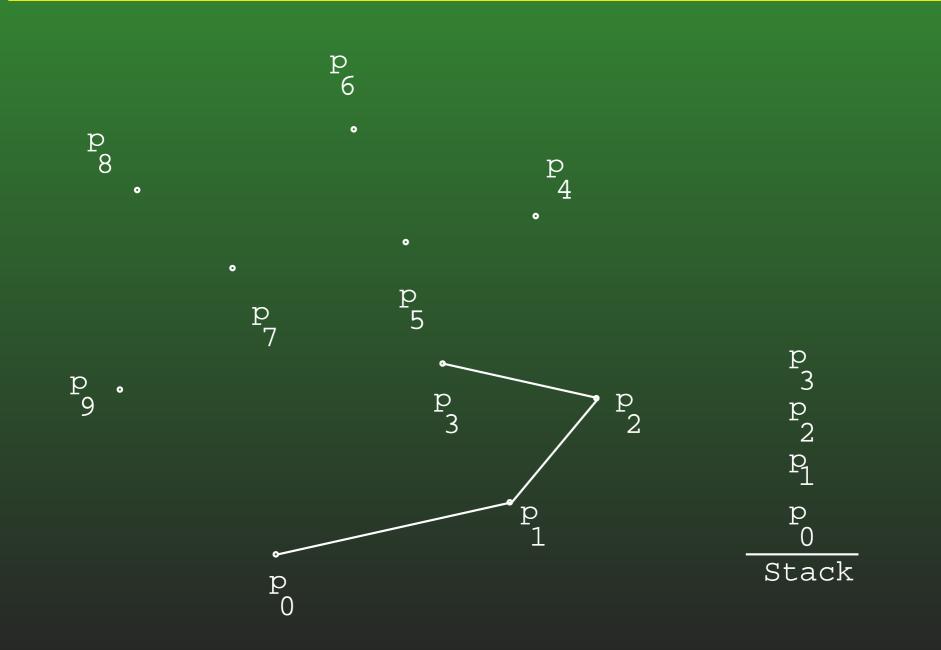
19-38: Graham's Scan



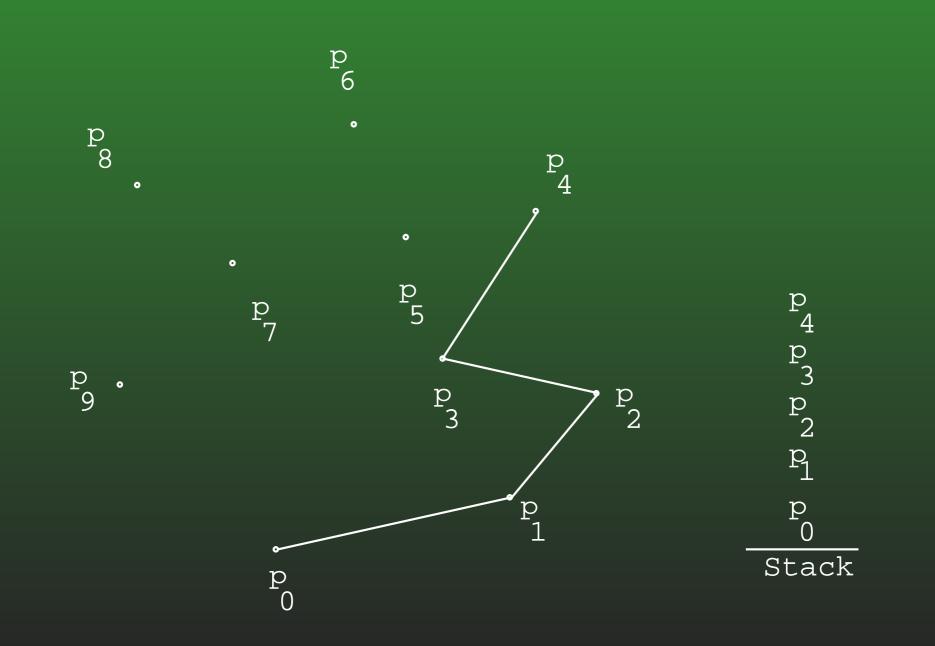
19-39: Graham's Scan



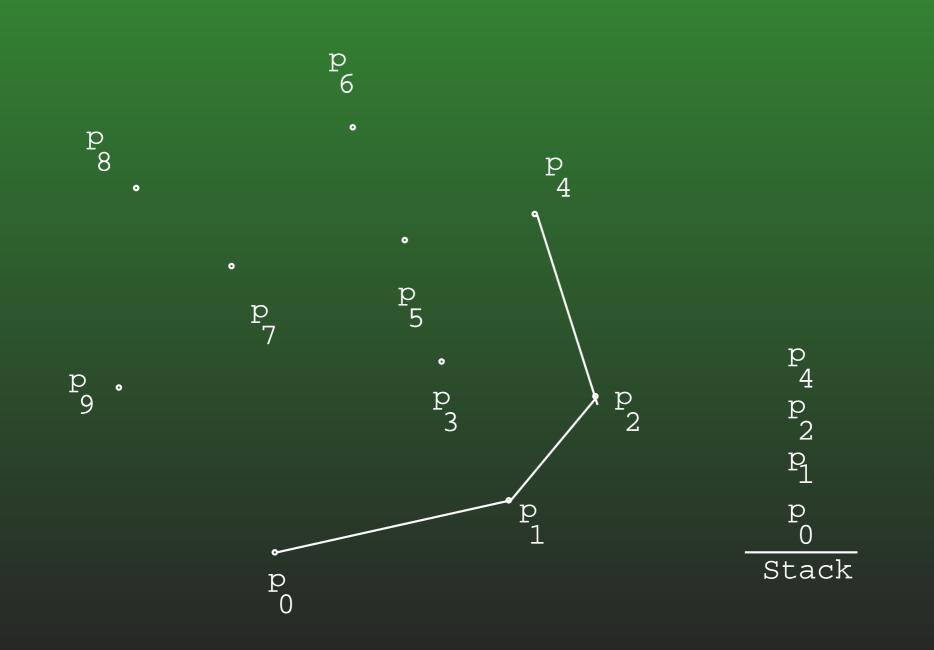
19-40: Graham's Scan



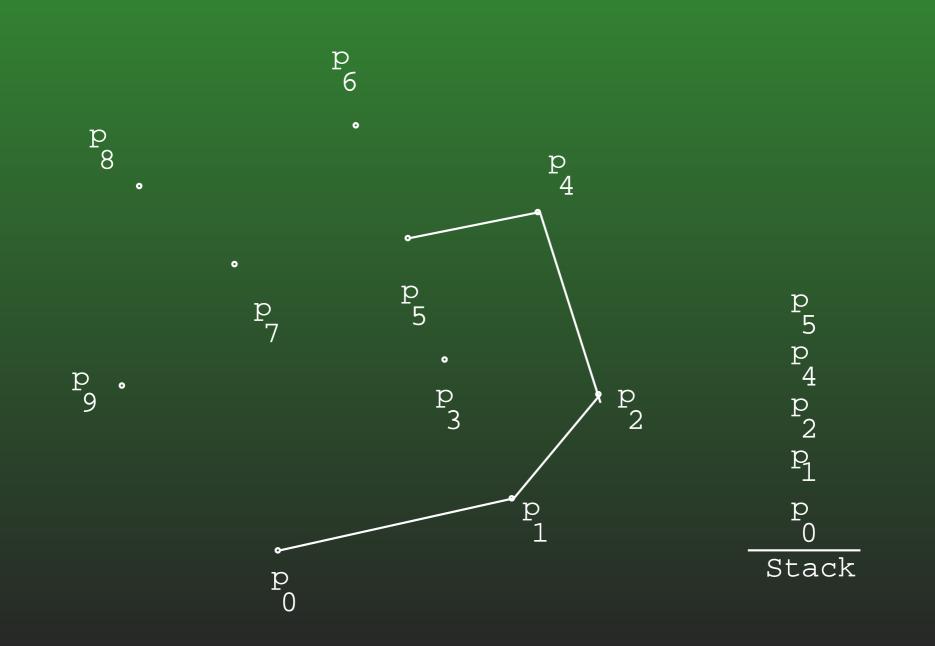
19-41: Graham's Scan



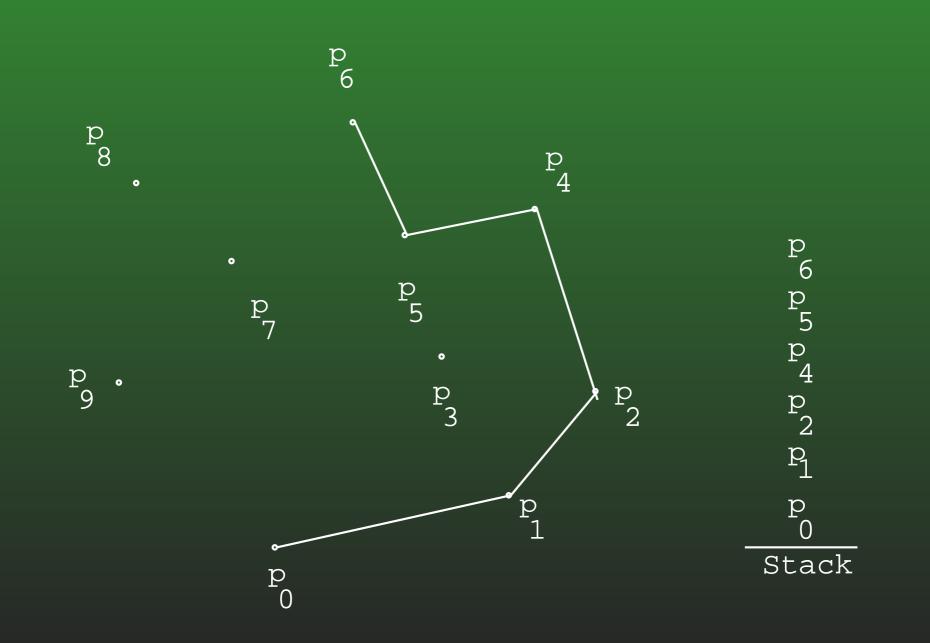
19-42: Graham's Scan



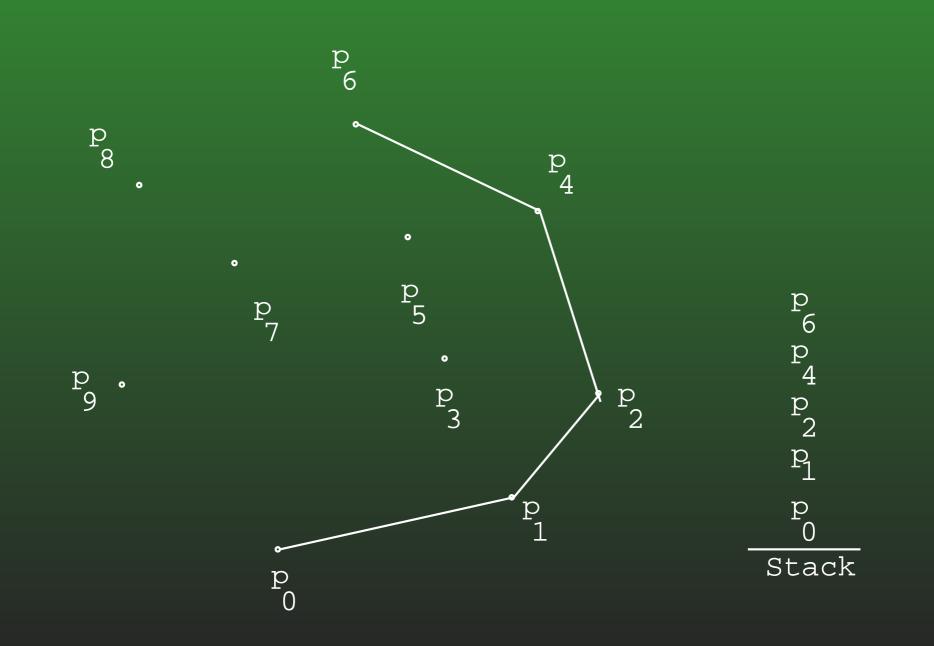
19-43: Graham's Scan



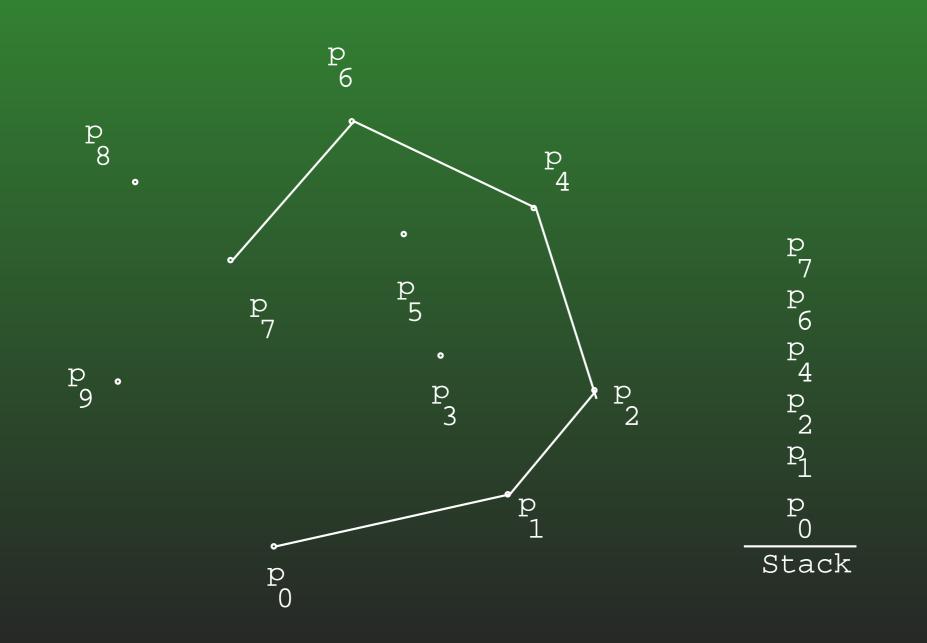
19-44: Graham's Scan



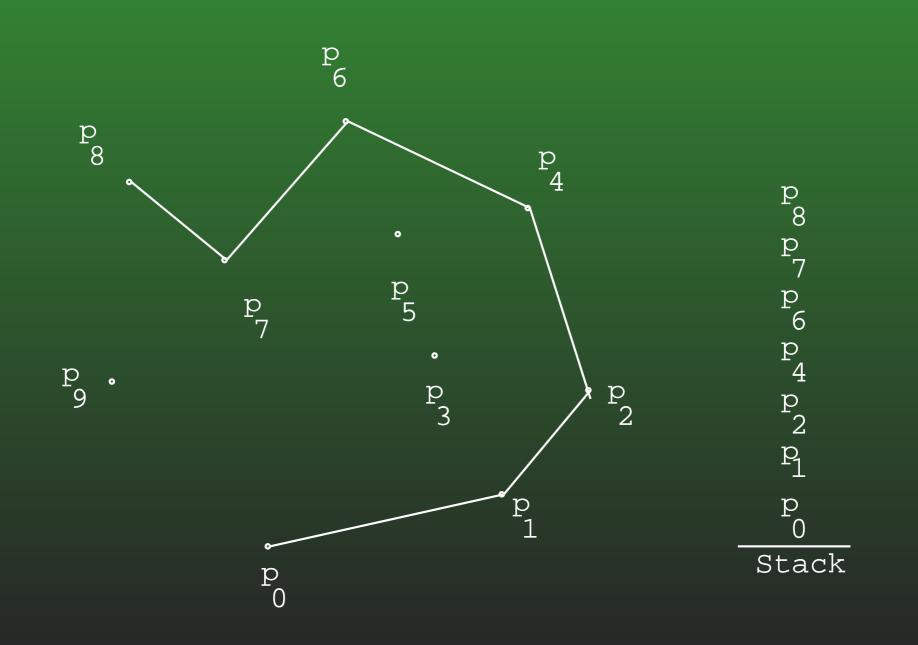
19-45: Graham's Scan



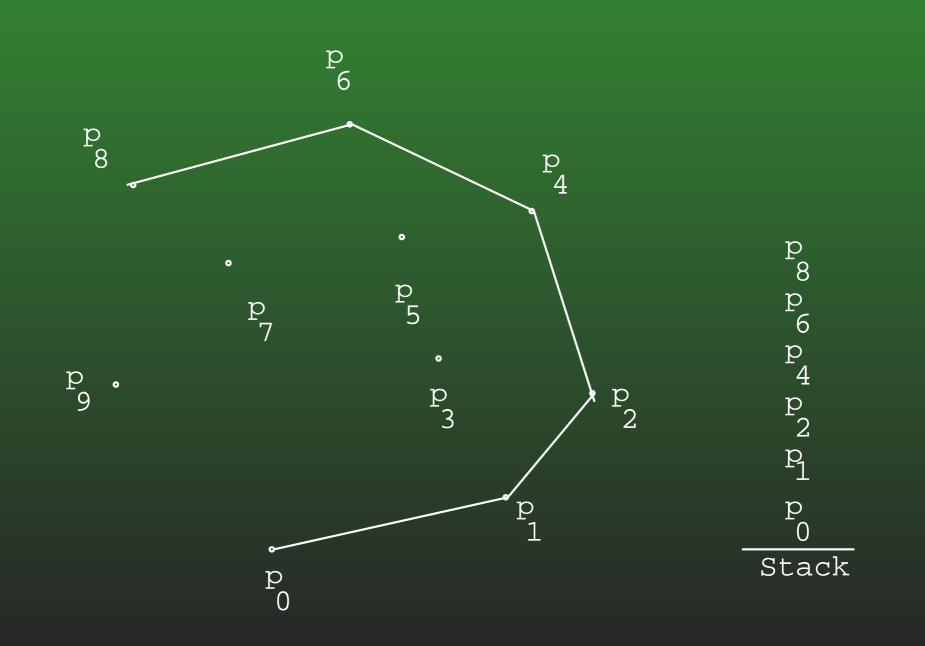
19-46: Graham's Scan



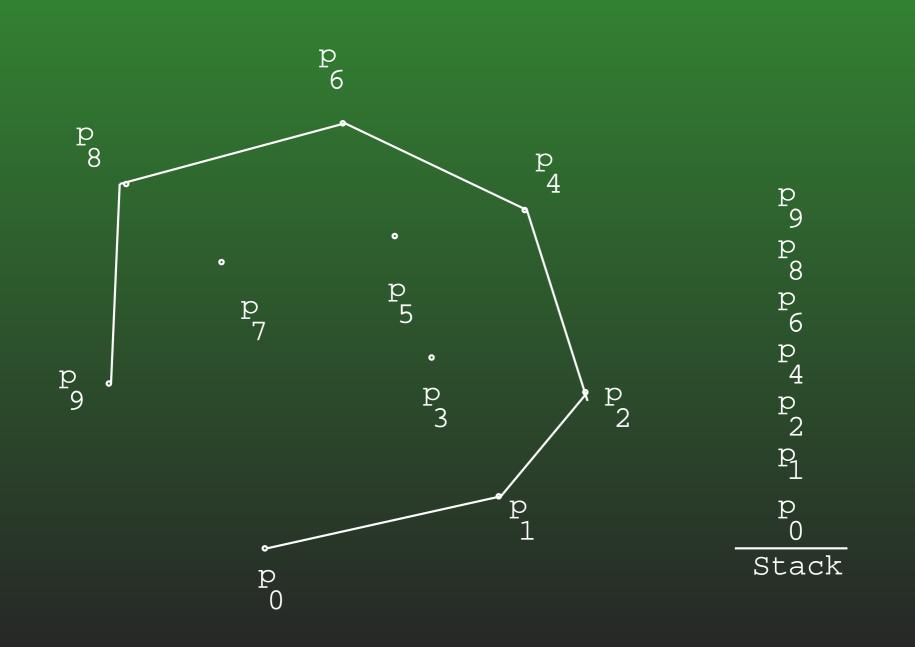
19-47: Graham's Scan



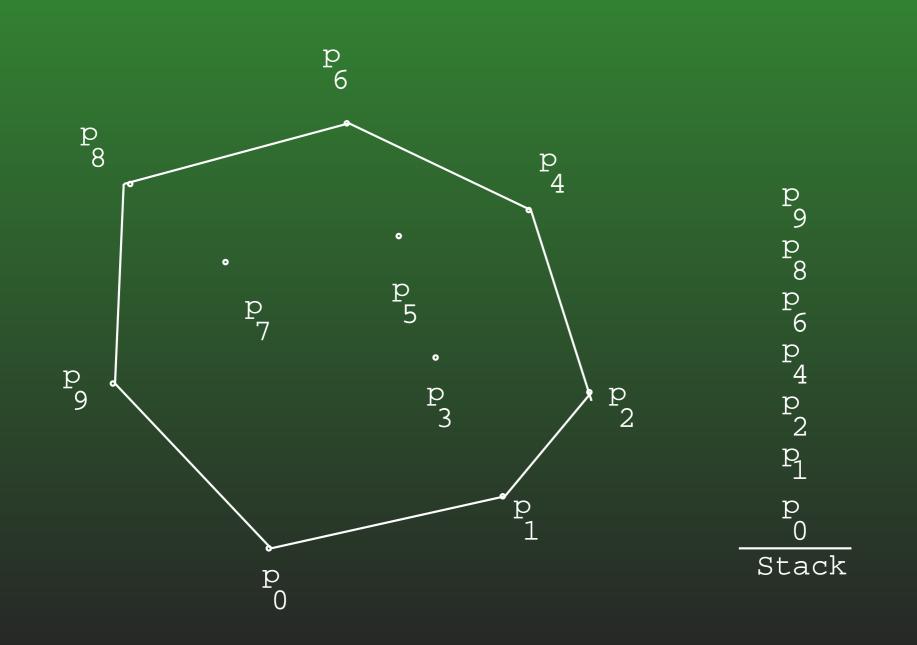
19-48: Graham's Scan



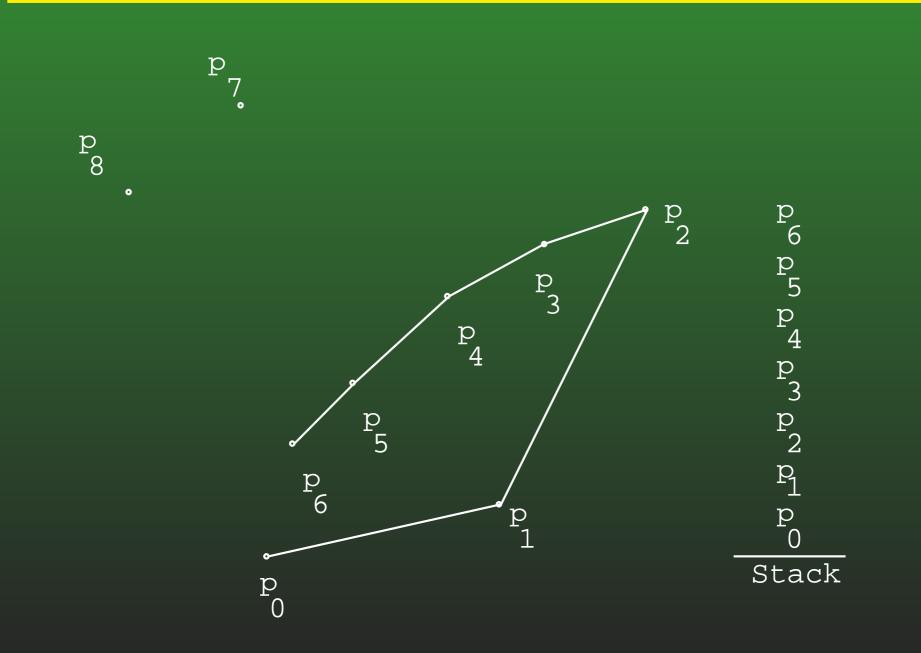
19-49: Graham's Scan



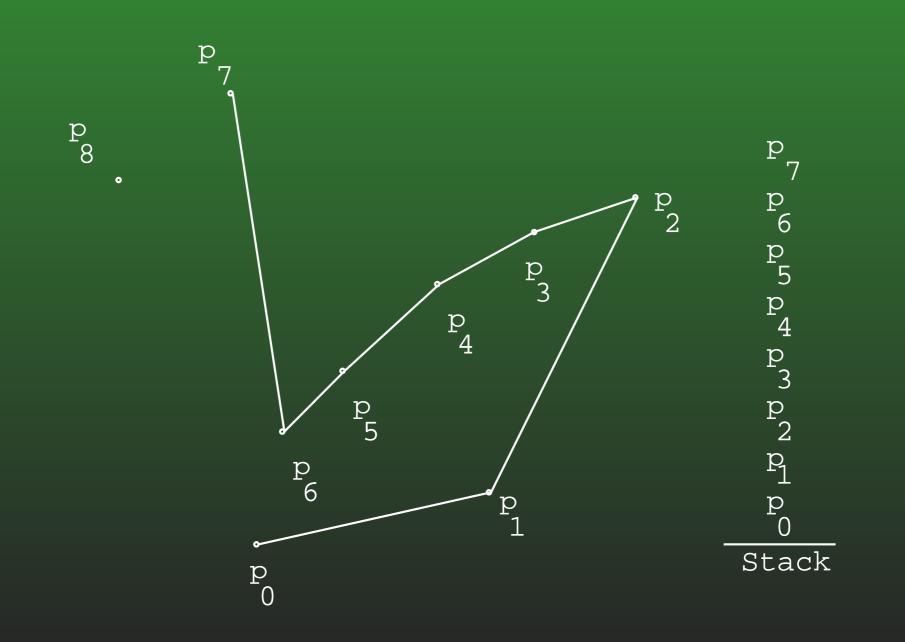
19-50: Graham's Scan



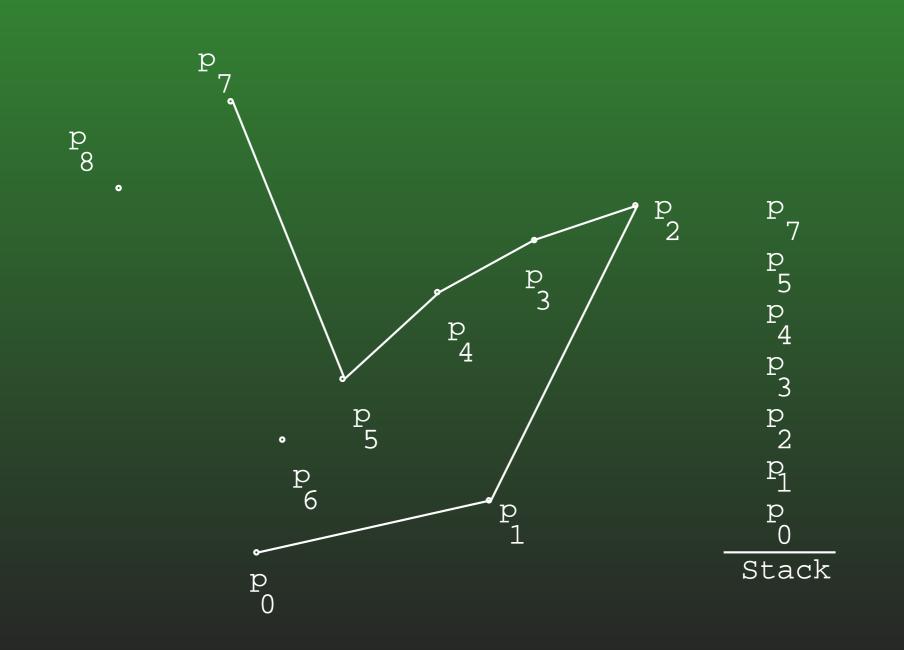
19-51: Graham's Scan



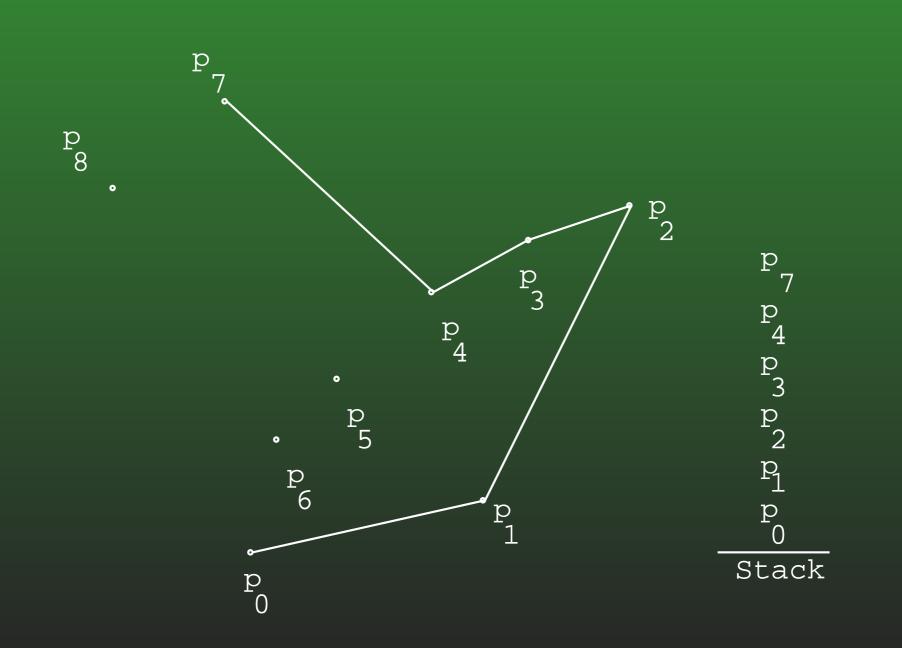
19-52: Graham's Scan



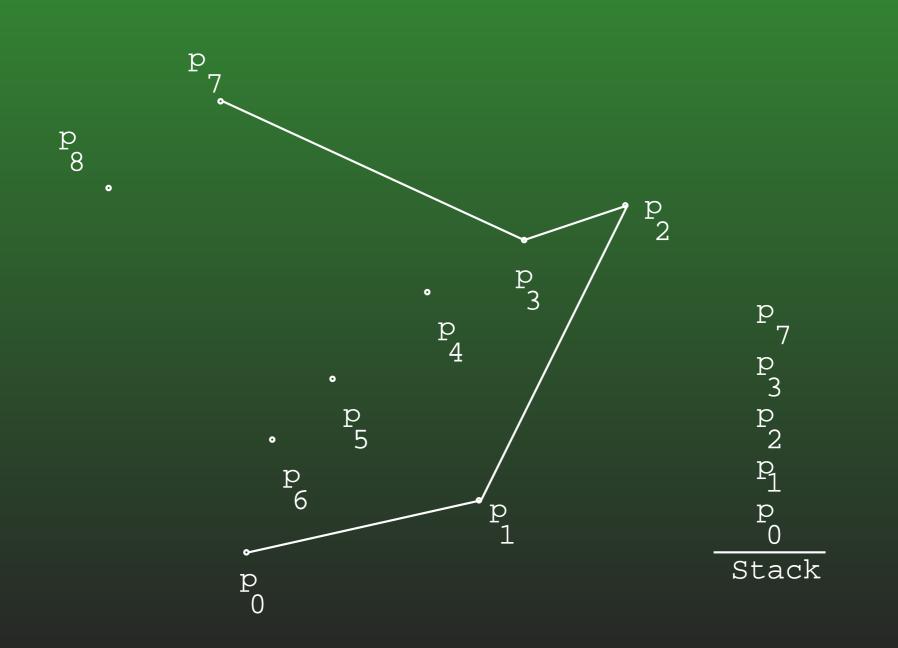
19-53: Graham's Scan



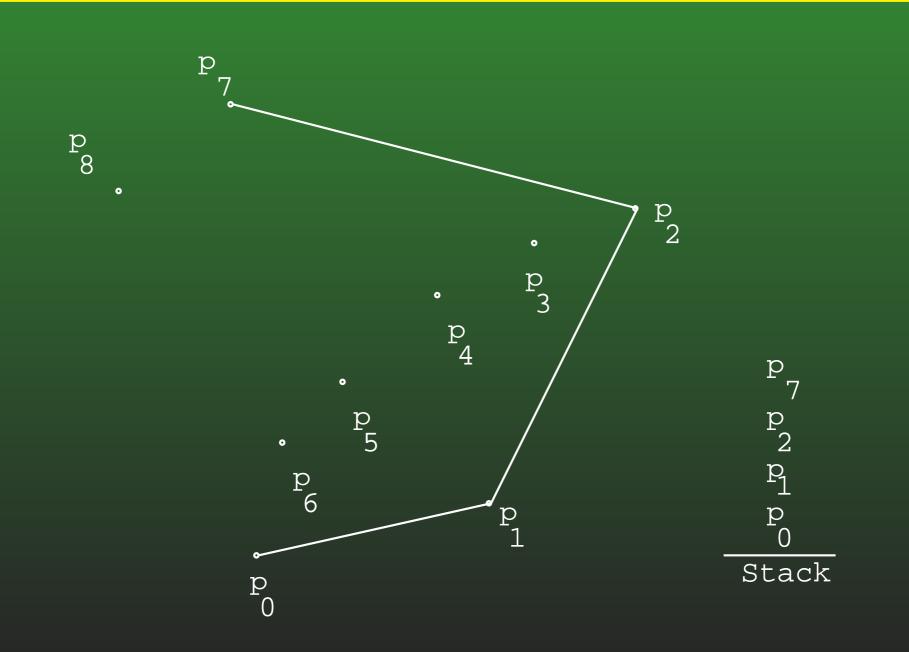
19-54: Graham's Scan



19-55: Graham's Scan



19-56: Graham's Scan



19-57: Graham's Scan

• Time required:

- $O(n \lg n)$ to sort points by polar degree
 - Note that you don't need to calculate the polar degree, just determine if one vector is clockwise or counterclockwise of another – can be done with a single cross product
- Each element is added to the stack once, and removed at most once (each taking constant time) for a total time of O(n)
- Total: $O(n \lg n)$

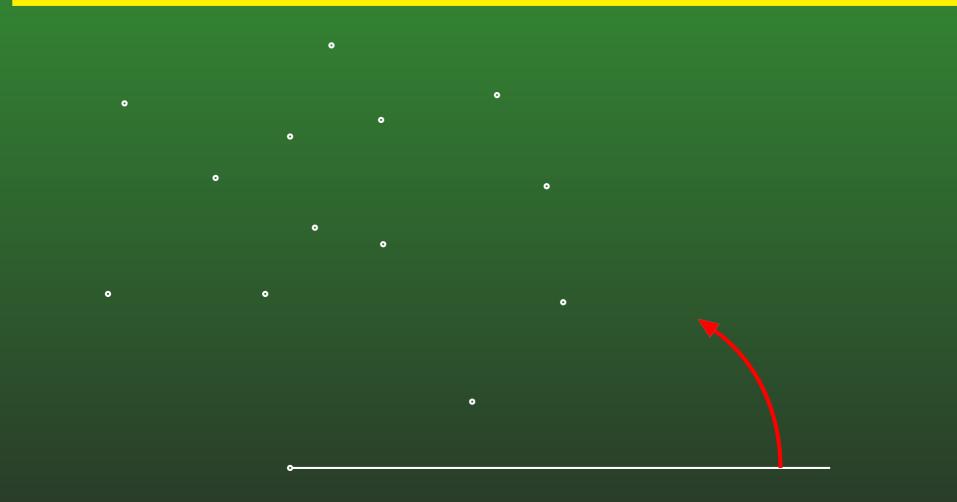
19-58: Convex Hull

- Different Convex Hull algorithm
- Idea:
 - Attach a string to the lowest point
 - Rotate string counterclockwise, unti it hits a point – this point is in the Convex Hull
 - Keep going until the highest point is reached
 - Continue around back to initial point

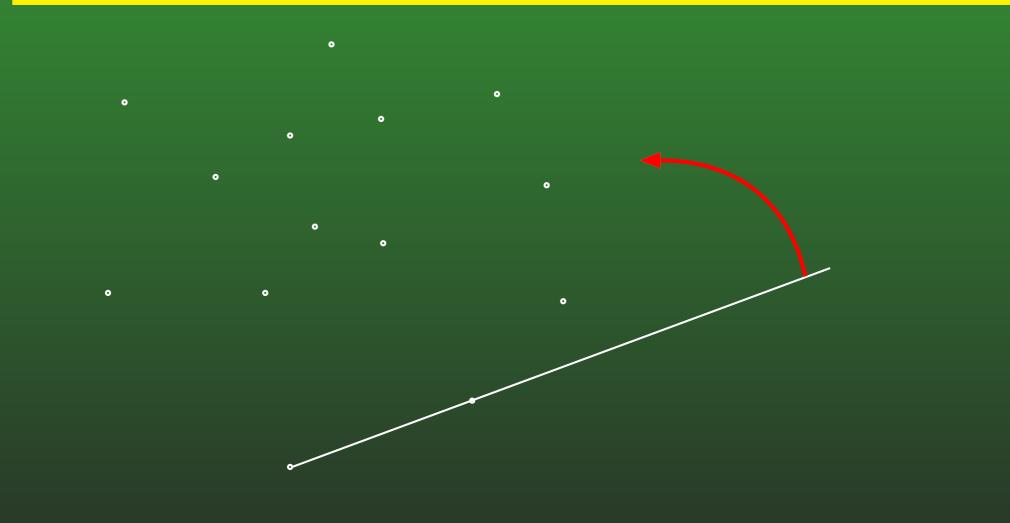
19-59: Jarvis's March

- 0 • • 0 • • 0 • • 0 0 0

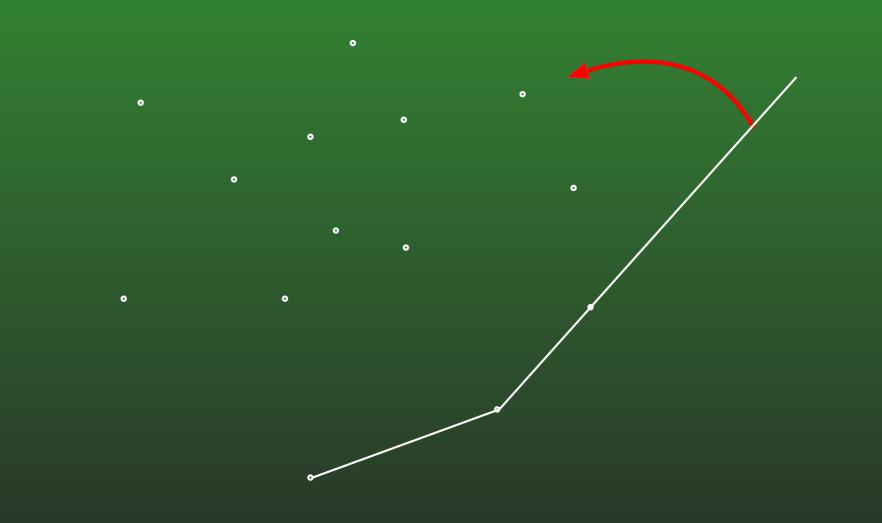
19-60: Jarvis's March



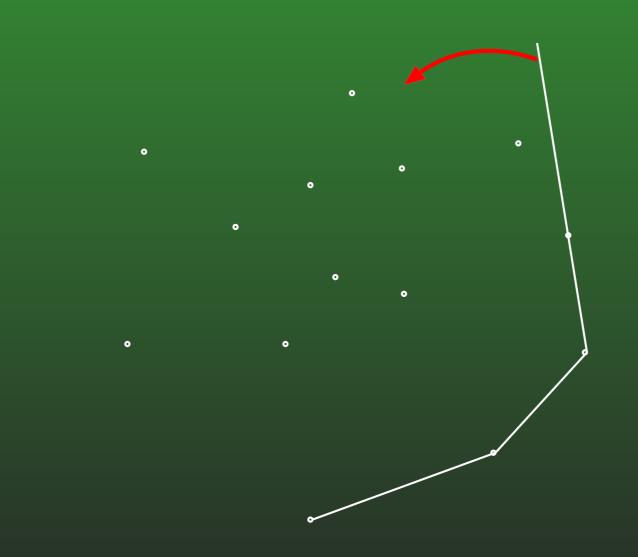
19-61: Jarvis's March



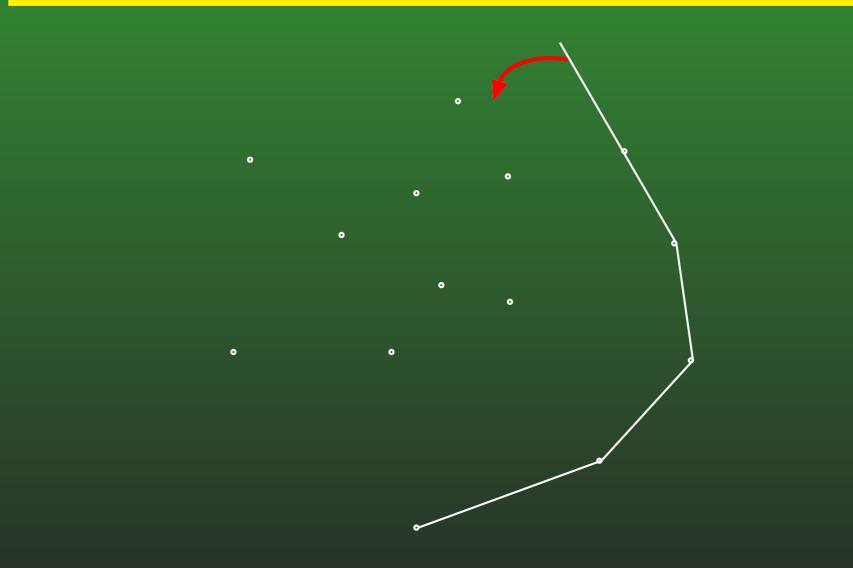
19-62: Jarvis's March



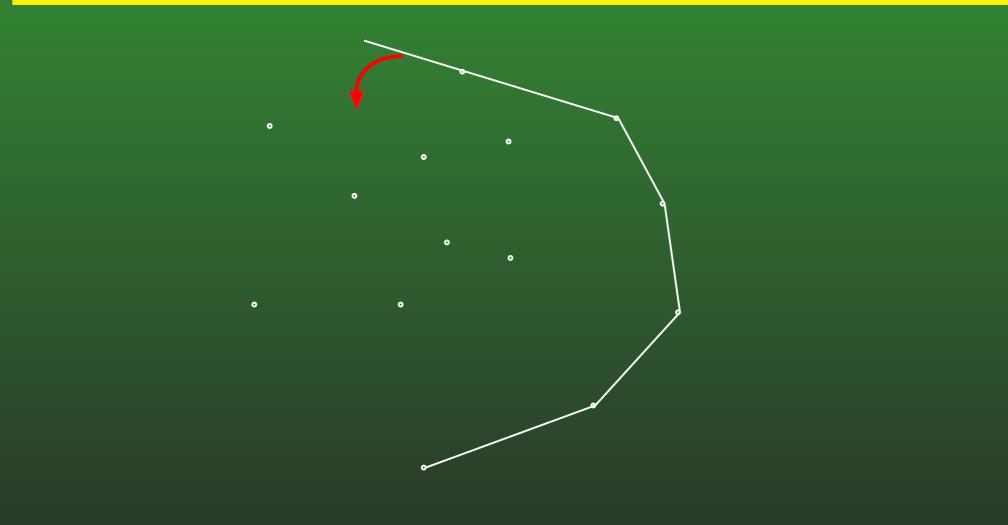
19-63: Jarvis's March



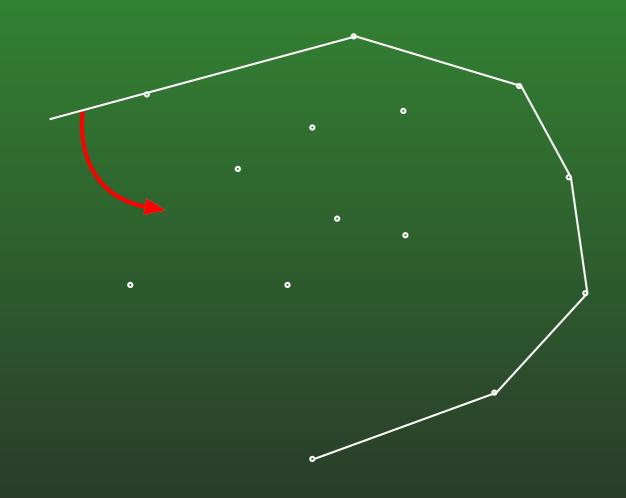
19-64: Jarvis's March



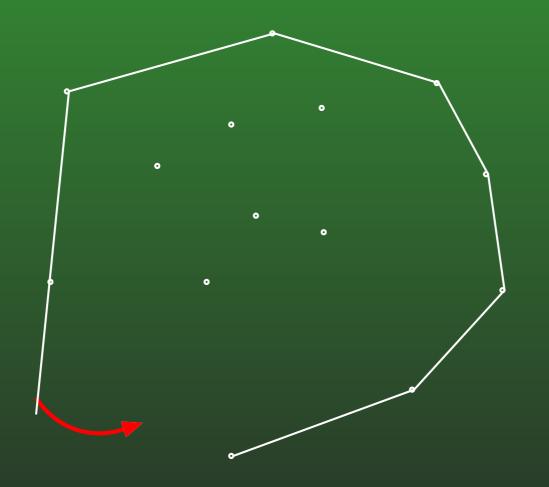
19-65: Jarvis's March



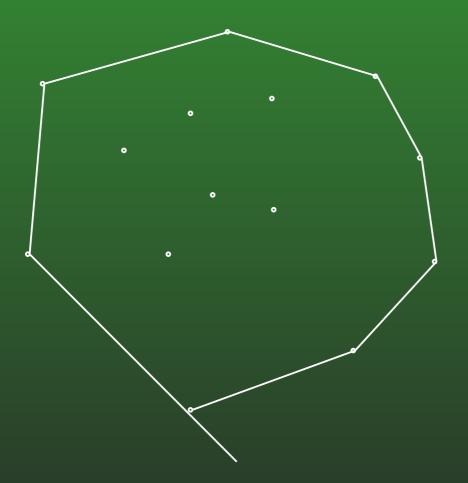
19-66: Jarvis's March



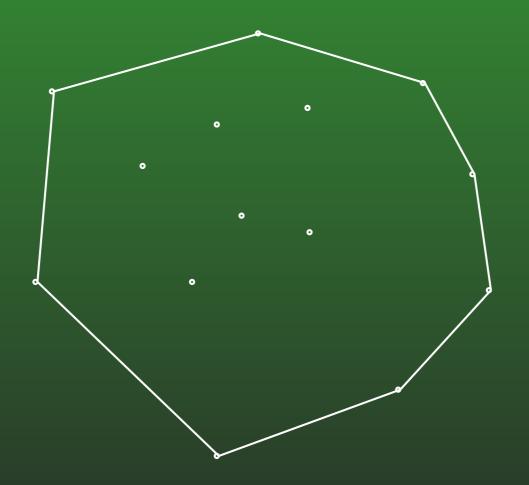
19-67: Jarvis's March



19-68: Jarvis's March



19-69: Jarvis's March



19-70: Jarvis's March

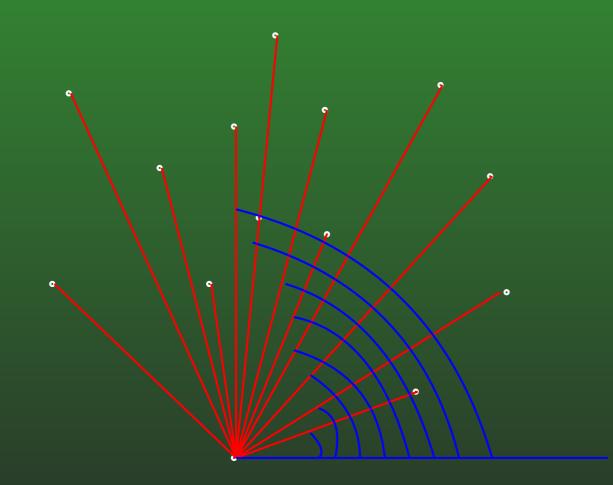
- How do we determine which point wraps next?
 - When we're going from lowest to highest point, the smallest polar angle between previous point and the next point
 - When going from highest point back to lowest point, smallest polar angle (from negative)

19-71: Jarvis's March

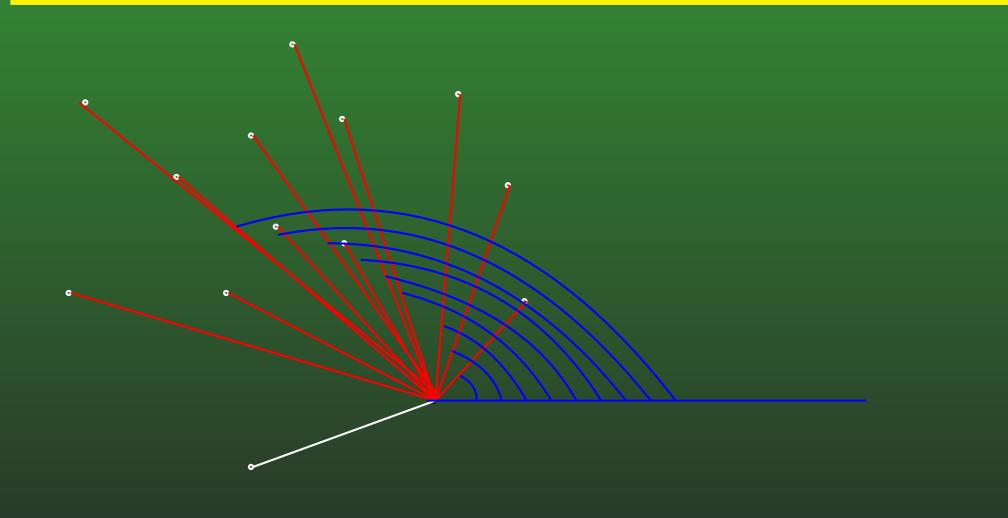
19-72: Jarvis's March

 (\circ)

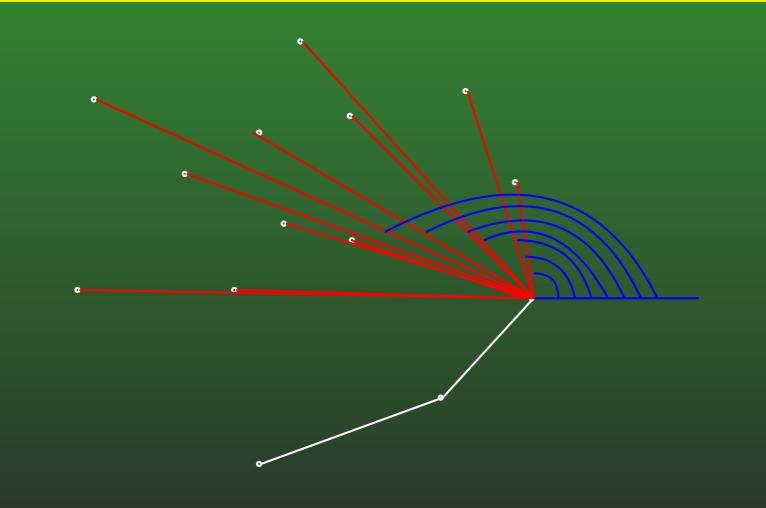
19-73: Jarvis's March



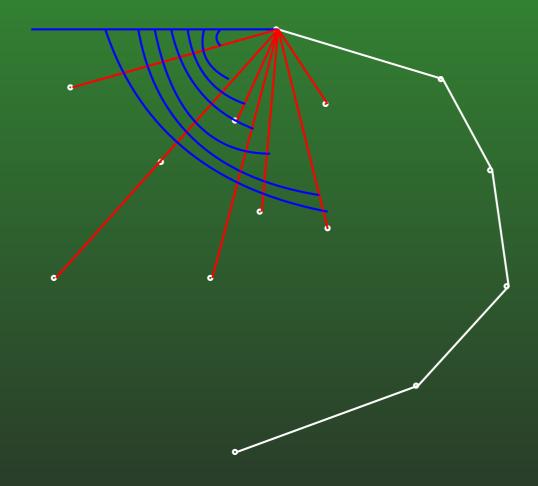
19-74: Jarvis's March



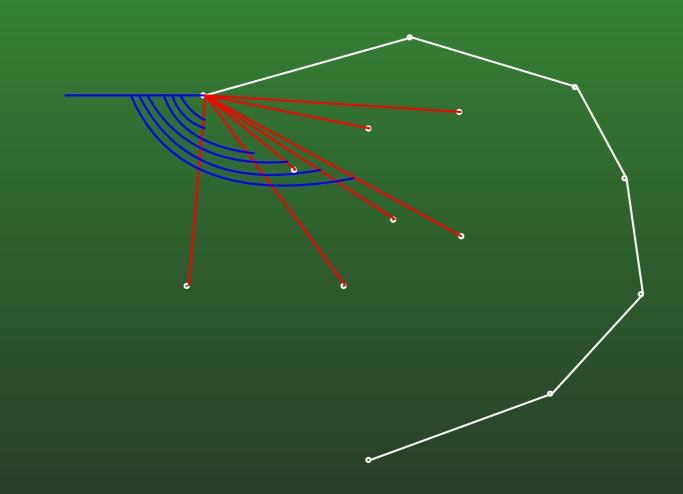
19-75: Jarvis's March



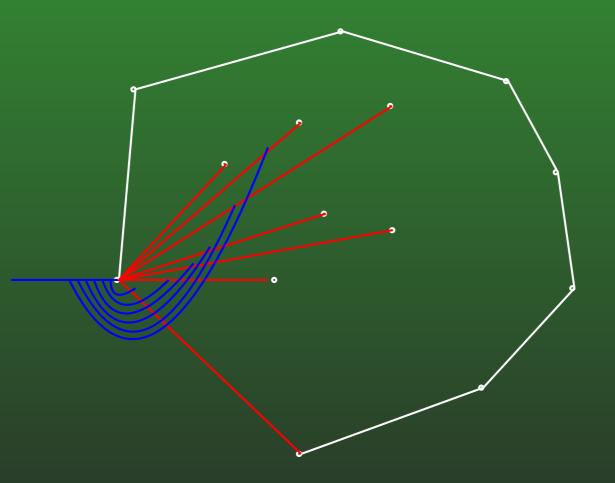
19-76: Jarvis's March



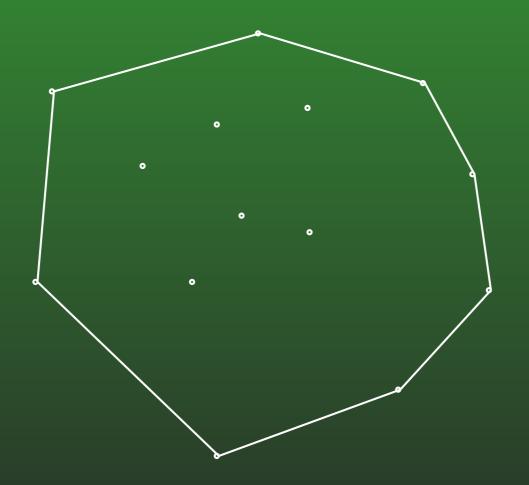
19-77: Jarvis's March



19-78: Jarvis's March



19-79: Jarvis's March



19-80: Jarvis's March

- We don't need to actually compute polar angles
 - We just need to compare them, which can be done with a cross product
- From point p_k , comparing angles from p_i and p_j (going up)
 - Is $\overline{p_k p_i}$ clockwise of $\overline{p_k p_j}$?
 - (is $(p_i p_k) \times (p_j p_k)$ positive)?

19-81: Jarvis's March

• Time for Jarvis's march:

- For each vertex in the convex hull, we need to look at up to *n* other vertices to find the next vertex in the convex hull.
- Total time: O(nh), where h is the number of vertices in the convex hull
- Is this better or worst than Graham's Scan

19-82: Closest Pair of Points

- We have a large number of points p_1, \ldots, p_n
- Want to determine which pair of points p_i, p_j is closest together
- How long would a brute force solution take?
- Can you think of another way?

19-83: Closest Pair of Points

Divide & Conquer

- Divide the list points in half (by a vertical line)
- Recursively determine the closest pair in each half
- ... and then what?

19-84: Closest Pair of Points

• Divide & Conquer

- Divide the list points in half (by a vertical line)
- Recursively determine the closest pair in each half
- Smallest distance between points is the minimum of:
 - Smallest distance in left half of points
 - Smallest distance in right half of points
 - Smallest distance that crosses from left to right

19-85: Closest Pair of Points

- - o o

19-86: Closest Pair of Points

- ° °
 - ° °

- o o
 - o
- o 0

19-87: Closest Pair of Points

- To find smallest distance that crosses from left to right:
 - If we compare all $\frac{n}{2}$ elements in the left sublist with all $\frac{n}{2}$ elements in the right sublist, how much time would that take?

19-88: Closest Pair of Points

- To find smallest distance that crosses from left to right:
 - If we compare all $\frac{n}{2}$ elements in the left sublist with all $\frac{n}{2}$ elements in the right sublist, how much time would that take?
 - $\Theta(n^2)$, no better than brute force solution!

19-89: Closest Pair of Points

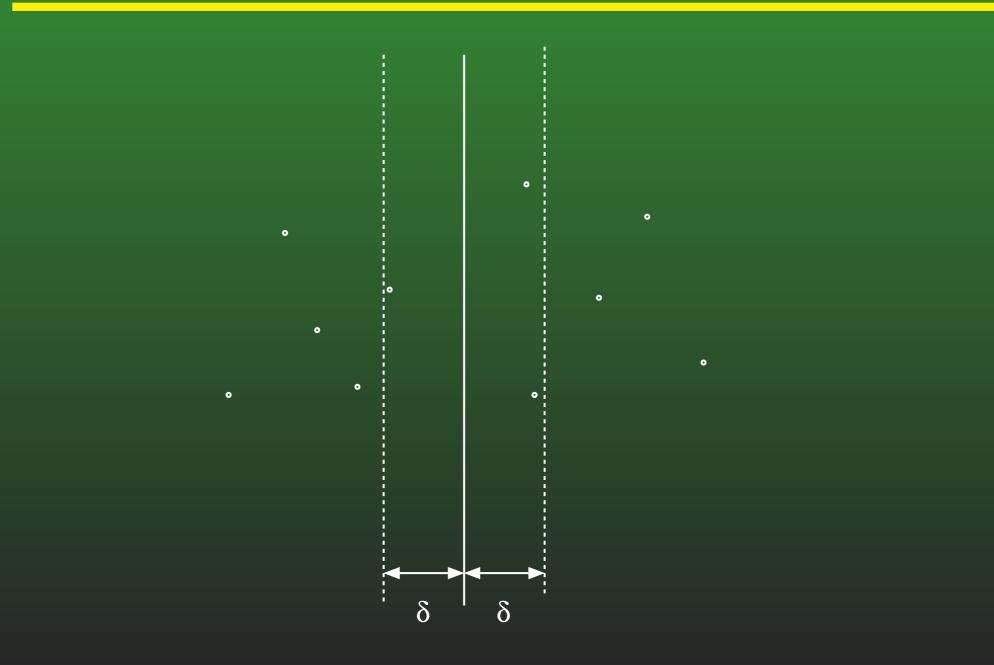
- To find smallest distance that crosses from left to right:
 - Let δ be the smallest distance in the two sublists
 - Examine only the points that are within δ of the centerline

19-90: Closest Pair of Points

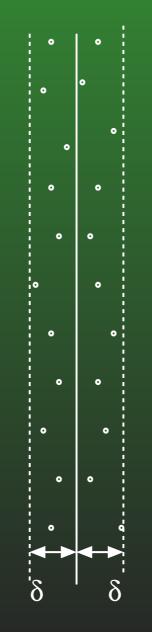
- ° °
 - ° °

- ° °
- •
- 9
- •

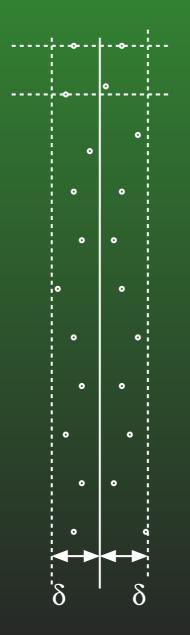
19-91: Closest Pair of Points



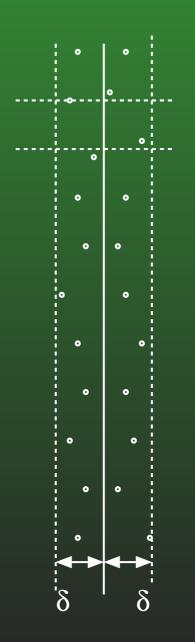
19-92: Closest Pair of Points



19-93: Closest Pair of Points

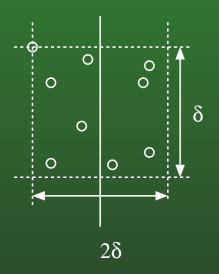


19-94: Closest Pair of Points



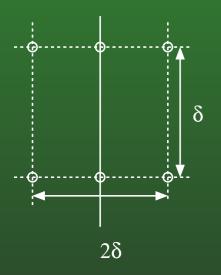
19-95: Closest Pair of Points

• How many points can be in the $\delta \times 2\delta$ rectangle?



19-96: Closest Pair of Points

• How many points can be in the $\delta \times 2\delta$ rectangle?



19-97: Closest Pair of Points

- Create two lists of the points:
 - One sorted by x-coordiate
 - One sorted by *y*-coordinate
- Call Find-Smallest using these two lists
 - Find-Smallest(XList,YList)

19-98: Closest Pair of Points

FindSmallest(L_x, L_y) if $|L_x| \leq 3$ do brute force search on 3 points Split list L_x in half Put first 1/2 in L_{XL} Put second 1/2 in L_{XR} Split list L_Y in half For each point p in L_y : If $p \in L_{XL}$, put p in L_{YL} If $p \in L_{XR}$, put p in L_{YR} $\delta \leftarrow \mathsf{FindSmallest}(L_{XL}, L_{YL})$ $\delta \leftarrow Min(\delta, FindSmallest(L_{XR}, L_{YR}))$ $\delta \leftarrow \mathsf{FindSmallestAcross}(L_{YR}, L_{YR}, \delta)$ return δ

19-99: Closest Pair of Points

• Time:

- Sorting: $O(n \lg n)$ using mergesort
- Recursive call:

$$T(1) = T(2) = T(3) = c_1$$

 $T(n) = 2T(n/2) + c_2 * n$

- $\Theta(n \lg n)$ by the Master Method
- Total time: $O(n \lg n)$