CS673-2016F-19 Computational Geometry

19-0: Cross Products

e Given any two points p1 = (z1, y1) and pa = (22, y2)

e Cross Product: p; X p2 = 21y2 — 211

P11 Xp2 = T1Y2 —X2U1
= —1x(x2y1 — 2192)
= —Pp2XpP
19-1: Cross Products

e Cross Product p; X po as Signed Area

1 1

e Area is positive if p; is “below” po
e Area is negative if p; is “above” pa

19-2: Cross Products

e Given two vectors that share an origin:
— —
e popi and pop2
e Is pop3 clockwise or counterclockwise relative to pops ?

19-3: Cross Products

% g

e e

Count er cl ockwi se Cl ockw se

19-4: Cross Products

CS673-2016F-19 Computational Geometry

e Given two vectors that share an origin:
° m and ZTP%
o Is ZTP% clockwise or counterclockwise relative to ZTP% ?
e (p1 —po) X (p2 — po) is positive, M is counterclockwise from]Tp{

19-5: Cross Products

e Given two line segments pop1 and p1p2, which direction does angle /pop;p2 turn?

p2
p2
p1
p1
pO pO
Left Turn Ri ght Turn

19-6: Cross Products

e Given two line segments pop; and Py pz, which direction does angle Zpyp;ps turn?

e (p2 —po) X (p1 — po) is positive, left turn
e (p2 —po) X (p1 — po) is negative, right turn
e (p2 —po) x (p1 — po) is zero, no turn (colinear)

19-7: Line Segment Intersection
e Given two line segments p1p3 and p3py, do they intersect?
e How could we determine this?
19-8: Line Segment Intersection

e Given two line segments p1ps and p3py, do they intersect?

e Each segment straddles the line containing the other

e An endpoint of one segment lies on the other segment

19-9: Line Segment Intersection

CS673-2016F-19 Computational Geometry

il

e p3 and p4 straddle line defined by p; and p2

e p; and ps straddle line defined by ps and py

19-10: Line Segment Intersection

e p3 and py straddle line defined by p; and ps

e p; and p» do not straddle line defined by ps and py

19-11: Line Segment Intersection

0 %

2 \p4

g

e p3 and py do not straddle line defined by p; and ps

e p; and p, do not straddle line defined by ps and py

CS673-2016F-19 Computational Geometry

19-12: Line Segment Intersection

19-13: Line Segment Intersection

Count er cl ockw se

19-14: Line Segment Intersection

CS673-2016F-19 Computational Geometry

Cl ockw se

19-15: Line Segment Intersection

e p3 and p4 straddle line define by p; and po if:

e pp3 is counterclockwise of pyps and pip; is clockwise of pip3

® (p2 —p1) x (p3 —p1) >0and (p2 — p1) X (ps —p1) <0
e p1p; is clockwise of p1ps and pyp; is counterclockwise of p1p3

® (p2 —p1) X (ps —p1) < Oand (p2 — p1) X (pa —p1) >0
19-16: Line Segment Intersection
e How can we determine if p3 is on the segment ppz?
19-17: Line Segment Intersection

e How can we determine if p3 is on the segment ppz?

e p3 is on the line defined by p; and ps

e ps is in the proper range along that line

19-18: Line Segment Intersection

CS673-2016F-19 Computational Geometry

19-19: Line Segment Intersection

i

19-20: Line Segment Intersection

e How can we determine if p3 is on the segment p1pz?

e ps is on the line defined by p; and ps
® (p2—p1) X (ps—p1) =0
e pj3 is in the proper range along that line
® p3, > p1,&&ps, < pa, or
P3, < p1,&&p3, > pa,
e p3, > p1,&&ps, < py, or
p3y < p1,&dps, > p2,

19-21: Line Segment Intersection

CS673-2016F-19 Computational Geometry 7

e Given a set of n line segments, do any of them intersect?

e What is a brute force method for solving this problem?

e How long does it take (if there are n total line segments)
19-22: Line Segment Intersection
e Given a set of n line segments, do any of them intersect?

e What is a brute force method for solving this problem?
e Check each pair of line segments, see if they intersect using the previous technique
e How long does it take (if there are n total line segments)
e Each of the n segments needs to be comparted to n — 1 other segments, for a total time of O(n?)

e We can do better!
19-23: Line Segment Intersection
e Basic idea:

e Assume that there are no vertical line segments

e Sweep a vertical line across the segments

e Segment A is above segment B at the line, and as we move the line to the right, Segment B becomes above
Segment A, then the segments have crossed

19-24: Line Segment Intersection

Segnent A

Segnent B

e Segment B is above Segment A

19-25: Line Segment Intersection
1

. Segment A

Segnent B

CS673-2016F-19 Computational Geometry

e Segment A is above Segment B
e The two segments must have crossed

19-26: Line Segment Intersection
e Maintain an ordered list of the segments that intersect with the current sweep line
e Whenever two segments become adjacent on this list, check to see if they intersect
e Only need to check endpoints of segments

19-27: Line Segment Intersection

e Maintian a data structure that lets us:

Insert a segment s into 7'

Delete a segment s from 7'
e Find the segment above s in T’

e Find the segment below s in T’
e Use a red-black tree, using cross products to see if segment 1 is above segment 2 at a certain point

19-28: Line Segment Intersection

Sort endpoints of segments from left to right
Break ties:
Left endpoints before right endpoints
lowest y-coordinate first
for each point p in endpoint list
if p is the left endpoint of a segment s
Insert s into T
if there is a segment above s in T that intersects s
or a segment below s in 7" that intersects s
return true
if p is the right endpoint of a segment s
if there is a segment above s and below s in T"
and these segments intersect
return true
Delete s from T
return false

19-29: Convex Hull

(o
(o
O O T O

CS673-2016F-19 Computational Geometry

19-30: Convex Hull
pa :

a a
b b
c

O O T @ -meeeeeemeeqemmemmeefemmee e
O @ T @ -weemmeemmms\rmemofemmogeneocfeee

a a
e d
d

19-31: Convex Hull

e Given a set of points, what is the smallest convex polygon that contains all points

o Alternately, if all of the points were nails in a board, and we placed a rubber band around all of them, what shape
would it form?

19-32: Convex Hull

19-33: Convex Hull

CS673-2016F-19 Computational Geometry 10

19-34: Convex Hull

e Several computational geometry problems have finding the convex hull as a subproblem
e Like many graph algorithms have finding a topological sort as a subproblem
e For instance: Finding the two furthest points

e Must lie on the convex hull

19-35: Convex Hull

e Graham’s Scan Algorithm

e Go through all the points in order
e Push points onto a stack
e Pop off points that don’t form part of the convex hull

e When we’re done, stack contains the points in the convex hull

19-36: Convex Hull

Gram-Scan
Let pg be the point with the minimum y-coordinate
Sort the points by increasing polar angle around pg
Push pg, p1, and p, on the stack S
fori <— 3 ton do
while angle formed by top two points on S
doesn’t turn left do
Pop
Push(p;)
return S

CS673-2016F-19 Computational Geometry

11

19-37: Graham’s Scan

19-38: Graham’s Scan

19-39: Graham’s Scan

CS673-2016F-19 Computational Geometry

12

o® P No

St ack

o FP NP wC

St ack

19-41: Graham’s Scan

CS673-2016F-19

Computational Geometry

13

19-43: Graham’s Scan

o P NP wC a0

St ack

o® P NC AT

St ack

CS673-2016F-19

Computational Geometry

14

19-45: Graham’s Scan

o® FPNC AT P

St ack

o° FP NP AT UIP

St ack

CS673-2016F-19

Computational Geometry

15

19-47: Graham’s Scan

o® FPNC AT P

St ack

oO° FP NP AT P °

St ack

CS673-2016F-19

Computational Geometry

16

19-49: Graham’s Scan

o FP NP AT 5C C @

St ack

o FP NP AT 5% o

St ack

CS673-2016F-19

Computational Geometry

17

19-51: Graham’s Scan

o FP NP AP 0% 0@ 0P

St ack

o FP NP AT 00° 0@ 0%

St ack

CS673-2016F-19

Computational Geometry

18

19-53: Graham’s Scan

OP P NC WP AP P °

KR
)
o
=

©
~

OP P NP WP AP P °

K
)
o
=

CS673-2016F-19

Computational Geometry

19

19-55: Graham’s Scan

©
~

2 |0P FP NG w® KO 1@

CS673-2016F-19 Computational Geometry

20

©
~

0 |0C P T

19-57: Graham’s Scan

e Time required:

e O(nlgn) to sort points by polar degree

e Note that you don’t need to calculate the polar degree, just determine if one vector is clockwise or

counterclockwise of another — can be done with a single cross product

e Each element is added to the stack once, and removed at most once (each taking constant time) for a total

time of O(n)
e Total: O(nlgn)

19-58: Convex Hull

e Different Convex Hull algorithm

CS673-2016F-19 Computational Geometry

21

e Idea:

e Attach a string to the lowest point
e Rotate string counterclockwise, unti it hits a point — this point is in the Convex Hull
e Keep going until the highest point is reached

e Continue around back to initial point

19-59: Jarvis’s March

19-60: Jarvis’s March

19-61: Jarvis’s March

CS673-2016F-19

Computational Geometry

22

19-62: Jarvis’s March

19-63: Jarvis’s March

19-64: Jarvis’s March

CS673-2016F-19

Computational Geometry

23

19-65: Jarvis’s March

19-66: Jarvis’s March

19-67: Jarvis’s March

CS673-2016F-19 Computational Geometry 24

19-68: Jarvis’s March

19-69: Jarvis’s March

19-70: Jarvis’s March

e How do we determine which point wraps next?

e When we’re going from lowest to highest point, the smallest polar angle between previous point and the
next point

e When going from highest point back to lowest point, smallest polar angle (from negative)

19-71: Jarvis’s March

CS673-2016F-19

Computational Geometry

25

19-72: Jarvis’s March

19-73: Jarvis’s March

19-74: Jarvis’s March

CS673-2016F-19

Computational Geometry

26

19-75: Jarvis’s March

19-76: Jarvis’s March

19-77: Jarvis’s March

CS673-2016F-19 Computational Geometry

27

19-78: Jarvis’s March

19-79: Jarvis’s March

19-80: Jarvis’s March

e We don’t need to actually compute polar angles
e We just need to compare them, which can be done with a cross product
e From point py, comparing angles from p; and p; (going up)

o Is prp; clockwise of prp;?

o (is (p; — pr) X (pj — pr) positive)?

CS673-2016F-19 Computational Geometry 28

19-81: Jarvis’s March

e Time for Jarvis’s march:

e For each vertex in the convex hull, we need to look at up to n other vertices to find the next vertex in the
convex hull.

e Total time: O(nh), where h is the number of vertices in the convex hull

e s this better or worst than Graham’s Scan
19-82: Closest Pair of Points

e We have a large number of points p1, ..., p,
e Want to determine which pair of points p;, p; is closest together
e How long would a brute force solution take?

e Can you think of another way?
19-83: Closest Pair of Points

e Divide & Conquer

e Divide the list points in half (by a vertical line)
e Recursively determine the closest pair in each half

e ... and then what?
19-84: Closest Pair of Points

e Divide & Conquer

e Divide the list points in half (by a vertical line)
e Recursively determine the closest pair in each half
e Smallest distance between points is the minimum of’:

e Smallest distance in left half of points
e Smallest distance in right half of points
e Smallest distance that crosses from left to right

19-85: Closest Pair of Points

o
o o

19-86: Closest Pair of Points

CS673-2016F-19 Computational Geometry 29

19-87: Closest Pair of Points

e To find smallest distance that crosses from left to right:
e If we compare all 5 elements in the left sublist with all 5 elements in the right sublist, how much time

2
would that take?
19-88: Closest Pair of Points

e To find smallest distance that crosses from left to right:

e If we compare all 5 elements in the left sublist with all 5 elements in the right sublist, how much time

would that take?

e O(n?), no better than brute force solution!
19-89: Closest Pair of Points

e To find smallest distance that crosses from left to right:

e Let ¢ be the smallest distance in the two sublists

e Examine only the points that are within § of the centerline

19-90: Closest Pair of Points

CS673-2016F-19

Computational Geometry

30

19-91: Closest Pair of Points

19-92: Closest Pair of Points

CS673-2016F-19

Computational Geometry

31

19-93: Closest Pair of Points

....... [P P A

' '
...... S LA -

19-94: Closest Pair of Points

CS673-2016F-19 Computational Geometry

32

>
5 3
19-95: Closest Pair of Points

e How many points can be in the § x 20 rectangle?

2%
19-96: Closest Pair of Points

e How many points can be in the § x 24 rectangle?

R S @
P S G <
—>

20

19-97: Closest Pair of Points

e Create two lists of the points:

e One sorted by x-coordiate

e One sorted by y-coordinate
o Call Find-Smallest using these two lists

e Find-Smallest(XList,YList)

CS673-2016F-19 Computational Geometry

33

19-98: Closest Pair of Points

FindSmallest(L,, L,)
if [L,] <3
do brute force search on 3 points
Split list L, in half
Put first 1/2in Lx,
Put second 1/2in Lx g
Split list Ly in half
For each point p in L,:
Ifpe Lxyp,putpin Ly,
Ifpe Lxg, putp in Ly g
6 < FindSmallest(L xr,, Ly 1)
6 < Min(9, FindSmallest(L x g, Ly r))
6 < FindSmallestAcross(Ly r, Ly g,)
return o

19-99: Closest Pair of Points

e Time:

e Sorting: O(nlgn) using mergesort

e Recursive call:

T(1)

e O(nlgn) by the Master Method
e Total time: O(nlgn)

T(2) = T(3) =C
T(n) = 2T(n/2)+ca*n

