
CS673-2016F-19 Computational Geometry 1

19-0: Cross Products

• Given any two points p1 = (x1, y1) and p2 = (x2, y2)

• Cross Product: p1 × p2 = x1y2 − x2y1

p1 × p2 = x1y2 − x2y1

= −1 ∗ (x2y1 − x1y2)

= −p2 × p1

19-1: Cross Products

• Cross Product p1 × p2 as Signed Area

p
1

p
2

p
1

p
2

p
2

p
1
+

• Area is positive if p1 is “below” p2

• Area is negative if p1 is “above” p2

19-2: Cross Products

• Given two vectors that share an origin:

• −−→p0p1 and −−→p0p2

• Is −−→p0p2 clockwise or counterclockwise relative to −−→p0p2 ?

19-3: Cross Products

p
1

p
2

p
0

p
2

p
1

p
0

Counterclockwise Clockwise

19-4: Cross Products

CS673-2016F-19 Computational Geometry 2

• Given two vectors that share an origin:

• −−→p0p1 and −−→p0p2

• Is −−→p0p2 clockwise or counterclockwise relative to −−→p0p2 ?

• (p1 − p0)× (p2 − p0) is positive,−−→p0p2 is counterclockwise from −−→p0p1

19-5: Cross Products

• Given two line segments p0p1 and p1p2, which direction does angle 6 p0p1p2 turn?

p
1

p
0

Left Turn

p
2

p
1

p
0

Right Turn

p
2

19-6: Cross Products

• Given two line segments p0p1 and p1p2, which direction does angle 6 p0p1p2 turn?

• (p2 − p0)× (p1 − p0) is positive, left turn

• (p2 − p0)× (p1 − p0) is negative, right turn

• (p2 − p0)× (p1 − p0) is zero, no turn (colinear)

19-7: Line Segment Intersection

• Given two line segments p1p2 and p3p4, do they intersect?

• How could we determine this?

19-8: Line Segment Intersection

• Given two line segments p1p2 and p3p4, do they intersect?

• Each segment straddles the line containing the other

• An endpoint of one segment lies on the other segment

19-9: Line Segment Intersection

CS673-2016F-19 Computational Geometry 3

p
1

p
2

p
3 p

4

• p3 and p4 straddle line defined by p1 and p2

• p1 and p2 straddle line defined by p3 and p4

19-10: Line Segment Intersection

p
1

p
2

p
3

p
4

• p3 and p4 straddle line defined by p1 and p2

• p1 and p2 do not straddle line defined by p3 and p4

19-11: Line Segment Intersection

p
1

p
2

p
3 p

4

• p3 and p4 do not straddle line defined by p1 and p2

• p1 and p2 do not straddle line defined by p3 and p4

CS673-2016F-19 Computational Geometry 4

19-12: Line Segment Intersection

p
1

p
2

p
3 p

4

19-13: Line Segment Intersection

p
1

p
2

p
3 p

4

Counterclockwise

Clockwise

19-14: Line Segment Intersection

CS673-2016F-19 Computational Geometry 5

p
1

p
2

p
3

p
4

Clockwise

Clockwise

19-15: Line Segment Intersection

• p3 and p4 straddle line define by p1 and p2 if:

• −−→p1p3 is counterclockwise of −−→p1p2 and −−→p1p4 is clockwise of −−→p1p2

• (p2 − p1)× (p3 − p1) > 0 and (p2 − p1)× (p4 − p1) < 0

• −−→p1p3 is clockwise of −−→p1p2 and −−→p1p4 is counterclockwise of −−→p1p2

• (p2 − p1)× (p3 − p1) < 0 and (p2 − p1)× (p4 − p1) > 0

19-16: Line Segment Intersection

• How can we determine if p3 is on the segment p1p2?

19-17: Line Segment Intersection

• How can we determine if p3 is on the segment p1p2?

• p3 is on the line defined by p1 and p2

• p3 is in the proper range along that line

19-18: Line Segment Intersection

CS673-2016F-19 Computational Geometry 6

p
1

p
2

p
3

19-19: Line Segment Intersection

p
1

p
2

p
3

19-20: Line Segment Intersection

• How can we determine if p3 is on the segment p1p2?

• p3 is on the line defined by p1 and p2

• (p2 − p1)× (p3 − p1) = 0

• p3 is in the proper range along that line

• p3x ≥ p1x&&p3x ≤ p2x or

p3x ≤ p1x&&p3x ≥ p2x
• p3y ≥ p1y&&p3y ≤ p2y or

p3y ≤ p1y&&p3y ≥ p2y

19-21: Line Segment Intersection

CS673-2016F-19 Computational Geometry 7

• Given a set of n line segments, do any of them intersect?

• What is a brute force method for solving this problem?

• How long does it take (if there are n total line segments)

19-22: Line Segment Intersection

• Given a set of n line segments, do any of them intersect?

• What is a brute force method for solving this problem?

• Check each pair of line segments, see if they intersect using the previous technique

• How long does it take (if there are n total line segments)

• Each of the n segments needs to be comparted to n− 1 other segments, for a total time of O(n2)

• We can do better!

19-23: Line Segment Intersection

• Basic idea:

• Assume that there are no vertical line segments

• Sweep a vertical line across the segments

• Segment A is above segment B at the line, and as we move the line to the right, Segment B becomes above

Segment A, then the segments have crossed

19-24: Line Segment Intersection

Segment A

Segment B

• Segment B is above Segment A

19-25: Line Segment Intersection

Segment A

Segment B

CS673-2016F-19 Computational Geometry 8

• Segment A is above Segment B

• The two segments must have crossed

19-26: Line Segment Intersection

• Maintain an ordered list of the segments that intersect with the current sweep line

• Whenever two segments become adjacent on this list, check to see if they intersect

• Only need to check endpoints of segments

19-27: Line Segment Intersection

• Maintian a data structure that lets us:

• Insert a segment s into T

• Delete a segment s from T

• Find the segment above s in T

• Find the segment below s in T

• Use a red-black tree, using cross products to see if segment 1 is above segment 2 at a certain point

19-28: Line Segment Intersection

Sort endpoints of segments from left to right

Break ties:

Left endpoints before right endpoints

lowest y-coordinate first

for each point p in endpoint list

if p is the left endpoint of a segment s

Insert s into T

if there is a segment above s in T that intersects s

or a segment below s in T that intersects s

return true

if p is the right endpoint of a segment s

if there is a segment above s and below s in T

and these segments intersect

return true

Delete s from T

return false

19-29: Convex Hull

a a
b

a
b
c

a
b
d
c

a

b

c

d

CS673-2016F-19 Computational Geometry 9

19-30: Convex Hull

a a
b

a
b
c

a
b
c
d

a

b

c

d

e

a
b
e
c
d

a
e
c
d

a
e
d

a
d

19-31: Convex Hull

• Given a set of points, what is the smallest convex polygon that contains all points

• Alternately, if all of the points were nails in a board, and we placed a rubber band around all of them, what shape

would it form?

19-32: Convex Hull

19-33: Convex Hull

CS673-2016F-19 Computational Geometry 10

19-34: Convex Hull

• Several computational geometry problems have finding the convex hull as a subproblem

• Like many graph algorithms have finding a topological sort as a subproblem

• For instance: Finding the two furthest points

• Must lie on the convex hull

19-35: Convex Hull

• Graham’s Scan Algorithm

• Go through all the points in order

• Push points onto a stack

• Pop off points that don’t form part of the convex hull

• When we’re done, stack contains the points in the convex hull

19-36: Convex Hull

Gram-Scan

Let p0 be the point with the minimum y-coordinate

Sort the points by increasing polar angle around p0
Push p0, p1, and p2 on the stack S
for i← 3 to n do

while angle formed by top two points on S
doesn’t turn left do

Pop

Push(pi)
return S

CS673-2016F-19 Computational Geometry 11

19-37: Graham’s Scan

19-38: Graham’s Scan

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

19-39: Graham’s Scan

CS673-2016F-19 Computational Geometry 12

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

Stack

p
0

p
1

p
2

19-40: Graham’s Scan

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

Stack

p
0

p
1

p
2

p
3

19-41: Graham’s Scan

CS673-2016F-19 Computational Geometry 13

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

Stack

p
0

p
1

p
2

p
3

p
4

19-42: Graham’s Scan

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

Stack

p
0

p
1

p
2

p
4

19-43: Graham’s Scan

CS673-2016F-19 Computational Geometry 14

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

Stack

p
0

p
1

p
2

p
4

p
5

19-44: Graham’s Scan

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

Stack

p
0

p
1

p
2

p
4

p
5

p
6

19-45: Graham’s Scan

CS673-2016F-19 Computational Geometry 15

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

Stack

p
0

p
1

p
2

p
4

p
6

19-46: Graham’s Scan

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

Stack

p
0

p
1

p
2

p
4

p
6

p
7

19-47: Graham’s Scan

CS673-2016F-19 Computational Geometry 16

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

Stack

p
0

p
1

p
2

p
4

p
6

p
7

p
8

19-48: Graham’s Scan

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

Stack

p
0

p
1

p
2

p
4

p
6

p
8

19-49: Graham’s Scan

CS673-2016F-19 Computational Geometry 17

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

Stack

p
0

p
1

p
2

p
4

p
6

p
8

p
9

19-50: Graham’s Scan

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

Stack

p
0

p
1

p
2

p
4

p
6

p
8

p
9

19-51: Graham’s Scan

CS673-2016F-19 Computational Geometry 18

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

Stack

p
0

p
1

p
2

p
3

p
4

p
5

p
6

19-52: Graham’s Scan

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

Stack

p
0

p
1

p
2

p
3

p
4

p
5

p
7
p
6

19-53: Graham’s Scan

CS673-2016F-19 Computational Geometry 19

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

Stack

p
0

p
1

p
2

p
3

p
4

p
5

p
7

19-54: Graham’s Scan

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

Stack

p
0

p
1

p
2

p
3

p
4

p
7

19-55: Graham’s Scan

CS673-2016F-19 Computational Geometry 20

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

Stack

p
0

p
1

p
2

p
3

p
7

19-56: Graham’s Scan

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

Stack

p
0

p
1

p
2

p
7

19-57: Graham’s Scan

• Time required:

• O(n lg n) to sort points by polar degree

• Note that you don’t need to calculate the polar degree, just determine if one vector is clockwise or

counterclockwise of another – can be done with a single cross product

• Each element is added to the stack once, and removed at most once (each taking constant time) for a total

time of O(n)

• Total: O(n lg n)

19-58: Convex Hull

• Different Convex Hull algorithm

CS673-2016F-19 Computational Geometry 21

• Idea:

• Attach a string to the lowest point

• Rotate string counterclockwise, unti it hits a point – this point is in the Convex Hull

• Keep going until the highest point is reached

• Continue around back to initial point

19-59: Jarvis’s March

19-60: Jarvis’s March

19-61: Jarvis’s March

CS673-2016F-19 Computational Geometry 22

19-62: Jarvis’s March

19-63: Jarvis’s March

19-64: Jarvis’s March

CS673-2016F-19 Computational Geometry 23

19-65: Jarvis’s March

19-66: Jarvis’s March

19-67: Jarvis’s March

CS673-2016F-19 Computational Geometry 24

19-68: Jarvis’s March

19-69: Jarvis’s March

19-70: Jarvis’s March

• How do we determine which point wraps next?

• When we’re going from lowest to highest point, the smallest polar angle between previous point and the

next point

• When going from highest point back to lowest point, smallest polar angle (from negative)

19-71: Jarvis’s March

CS673-2016F-19 Computational Geometry 25

19-72: Jarvis’s March

19-73: Jarvis’s March

19-74: Jarvis’s March

CS673-2016F-19 Computational Geometry 26

19-75: Jarvis’s March

19-76: Jarvis’s March

19-77: Jarvis’s March

CS673-2016F-19 Computational Geometry 27

19-78: Jarvis’s March

19-79: Jarvis’s March

19-80: Jarvis’s March

• We don’t need to actually compute polar angles

• We just need to compare them, which can be done with a cross product

• From point pk, comparing angles from pi and pj (going up)

• Is pkpi clockwise of pkpj?

• (is (pi − pk)× (pj − pk) positive)?

CS673-2016F-19 Computational Geometry 28

19-81: Jarvis’s March

• Time for Jarvis’s march:

• For each vertex in the convex hull, we need to look at up to n other vertices to find the next vertex in the

convex hull.

• Total time: O(nh), where h is the number of vertices in the convex hull

• Is this better or worst than Graham’s Scan

19-82: Closest Pair of Points

• We have a large number of points p1, . . . , pn

• Want to determine which pair of points pi, pj is closest together

• How long would a brute force solution take?

• Can you think of another way?

19-83: Closest Pair of Points

• Divide & Conquer

• Divide the list points in half (by a vertical line)

• Recursively determine the closest pair in each half

• . . . and then what?

19-84: Closest Pair of Points

• Divide & Conquer

• Divide the list points in half (by a vertical line)

• Recursively determine the closest pair in each half

• Smallest distance between points is the minimum of:

• Smallest distance in left half of points

• Smallest distance in right half of points

• Smallest distance that crosses from left to right

19-85: Closest Pair of Points

19-86: Closest Pair of Points

CS673-2016F-19 Computational Geometry 29

19-87: Closest Pair of Points

• To find smallest distance that crosses from left to right:

• If we compare all n
2

elements in the left sublist with all n
2

elements in the right sublist, how much time

would that take?

19-88: Closest Pair of Points

• To find smallest distance that crosses from left to right:

• If we compare all n
2

elements in the left sublist with all n
2

elements in the right sublist, how much time

would that take?

• Θ(n2), no better than brute force solution!

19-89: Closest Pair of Points

• To find smallest distance that crosses from left to right:

• Let δ be the smallest distance in the two sublists

• Examine only the points that are within δ of the centerline

19-90: Closest Pair of Points

CS673-2016F-19 Computational Geometry 30

19-91: Closest Pair of Points

δ δ

19-92: Closest Pair of Points

CS673-2016F-19 Computational Geometry 31

δ δ

19-93: Closest Pair of Points

δ δ

19-94: Closest Pair of Points

CS673-2016F-19 Computational Geometry 32

δ δ

19-95: Closest Pair of Points

• How many points can be in the δ × 2δ rectangle?

2δ

δ

19-96: Closest Pair of Points

• How many points can be in the δ × 2δ rectangle?

2δ

δ

19-97: Closest Pair of Points

• Create two lists of the points:

• One sorted by x-coordiate

• One sorted by y-coordinate

• Call Find-Smallest using these two lists

• Find-Smallest(XList,YList)

CS673-2016F-19 Computational Geometry 33

19-98: Closest Pair of Points

FindSmallest(Lx, Ly)

if |Lx| ≤ 3
do brute force search on 3 points

Split list Lx in half

Put first 1/2 in LXL

Put second 1/2 in LXR

Split list LY in half

For each point p in Ly:

If p ∈ LXL, put p in LY L

If p ∈ LXR, put p in LYR

δ ← FindSmallest(LXL, LY L)

δ ←Min(δ, FindSmallest(LXR, LYR))

δ ← FindSmallestAcross(LYR, LY R, δ)

return δ

19-99: Closest Pair of Points

• Time:

• Sorting: O(n lg n) using mergesort

• Recursive call:

T (1) = T (2) = T (3) = c1

T (n) = 2T (n/2) + c2 ∗ n

• Θ(n lg n) by the Master Method

• Total time: O(n lg n)

