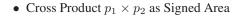
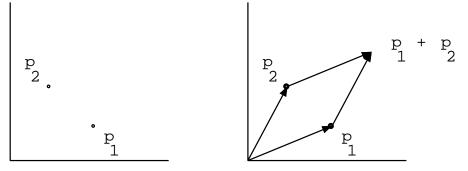
### 19-0: Cross Products

- Given any two points  $p_1 = (x_1, y_1)$  and  $p_2 = (x_2, y_2)$ 
  - Cross Product:  $p_1 \times p_2 = x_1y_2 x_2y_1$

$$p_1 \times p_2 = x_1 y_2 - x_2 y_1 = -1 * (x_2 y_1 - x_1 y_2) = -p_2 \times p_1$$

### 19-1: Cross Products



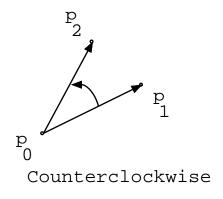


- Area is positive if  $p_1$  is "below"  $p_2$
- Area is negative if  $p_1$  is "above"  $p_2$

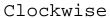
# 19-2: Cross Products

- Given two vectors that share an origin:
  - $\overrightarrow{p_0p_1}$  and  $\overrightarrow{p_0p_2}$
- Is  $\overrightarrow{p_0p_2}$  clockwise or counterclockwise relative to  $\overrightarrow{p_0p_2}$  ?

# 19-3: Cross Products



p p 0

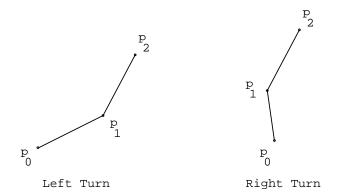


19-4: Cross Products

- Given two vectors that share an origin:
  - $\overrightarrow{p_0p_1}$  and  $\overrightarrow{p_0p_2}$
- Is  $\overrightarrow{p_0p_2}$  clockwise or counterclockwise relative to  $\overrightarrow{p_0p_2}$  ?
  - $(p_1 p_0) \times (p_2 p_0)$  is positive,  $\overrightarrow{p_0 p_2}$  is counterclockwise from  $\overrightarrow{p_0 p_1}$

#### 19-5: Cross Products

• Given two line segments  $\overline{p_0p_1}$  and  $\overline{p_1p_2}$ , which direction does angle  $\angle p_0p_1p_2$  turn?



# 19-6: Cross Products

- Given two line segments  $\overline{p_0p_1}$  and  $\overline{p_1p_2}$ , which direction does angle  $\angle p_0p_1p_2$  turn?
  - $(p_2 p_0) \times (p_1 p_0)$  is positive, left turn
  - $(p_2 p_0) \times (p_1 p_0)$  is negative, right turn
  - $(p_2 p_0) \times (p_1 p_0)$  is zero, no turn (colinear)

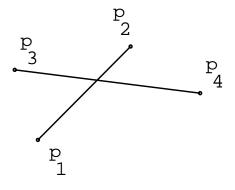
#### 19-7: Line Segment Intersection

- Given two line segments  $\overline{p_1p_2}$  and  $\overline{p_3p_4}$ , do they intersect?
  - How could we determine this?

#### 19-8: Line Segment Intersection

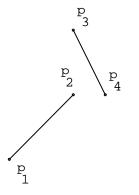
- Given two line segments  $\overline{p_1p_2}$  and  $\overline{p_3p_4}$ , do they intersect?
  - Each segment straddles the line containing the other
  - An endpoint of one segment lies on the other segment

#### 19-9: Line Segment Intersection



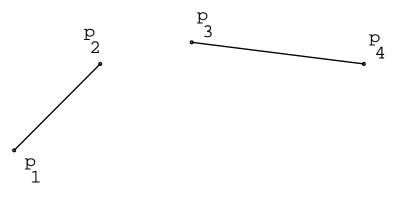
- $p_3$  and  $p_4$  straddle line defined by  $p_1$  and  $p_2$
- $p_1$  and  $p_2$  straddle line defined by  $p_3$  and  $p_4$

# 19-10: Line Segment Intersection



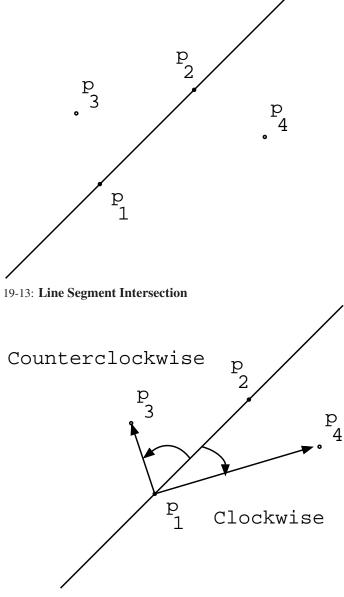
- $p_3$  and  $p_4$  straddle line defined by  $p_1$  and  $p_2$
- $p_1$  and  $p_2$  do not straddle line defined by  $p_3$  and  $p_4$

### 19-11: Line Segment Intersection

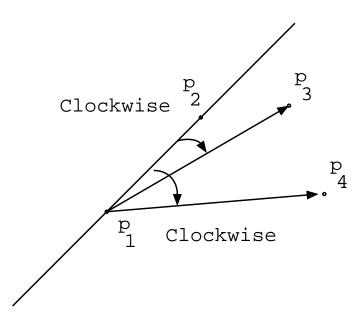


- $p_3$  and  $p_4$  do not straddle line defined by  $p_1$  and  $p_2$
- $p_1$  and  $p_2$  do not straddle line defined by  $p_3$  and  $p_4$

# 19-12: Line Segment Intersection



19-14: Line Segment Intersection



#### 19-15: Line Segment Intersection

- $p_3$  and  $p_4$  straddle line define by  $p_1$  and  $p_2$  if:
  - $\overrightarrow{p_1p_3}$  is counterclockwise of  $\overrightarrow{p_1p_2}$  and  $\overrightarrow{p_1p_4}$  is clockwise of  $\overrightarrow{p_1p_2}$ 
    - $(p_2 p_1) \times (p_3 p_1) > 0$  and  $(p_2 p_1) \times (p_4 p_1) < 0$
  - $\overrightarrow{p_1p_3}$  is clockwise of  $\overrightarrow{p_1p_2}$  and  $\overrightarrow{p_1p_4}$  is counterclockwise of  $\overrightarrow{p_1p_2}$ 
    - $(p_2 p_1) \times (p_3 p_1) < 0$  and  $(p_2 p_1) \times (p_4 p_1) > 0$

#### 19-16: Line Segment Intersection

• How can we determine if  $p_3$  is on the segment  $\overline{p_1p_2}$ ?

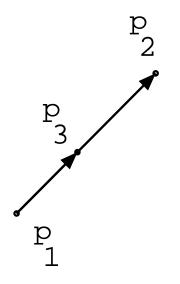
# 19-17: Line Segment Intersection

- How can we determine if  $p_3$  is on the segment  $\overline{p_1p_2}$ ?
  - $p_3$  is on the line defined by  $p_1$  and  $p_2$
  - $p_3$  is in the proper range along that line

#### 19-18: Line Segment Intersection



19-19: Line Segment Intersection



# 19-20: Line Segment Intersection

- How can we determine if  $p_3$  is on the segment  $\overline{p_1p_2}$ ?
  - $p_3$  is on the line defined by  $p_1$  and  $p_2$

• 
$$(p_2 - p_1) \times (p_3 - p_1) = 0$$

- $p_3$  is in the proper range along that line
  - $p_{3_x} \ge p_{1_x} \&\& p_{3_x} \le p_{2_x}$  or  $p_{3_x} \le p_{1_x} \&\& p_{3_x} \ge p_{2_x}$
  - $p_{3y} \ge p_{1y} \&\& p_{3y} \le p_{2y}$  or  $p_{3y} \le p_{1y} \&\& p_{3y} \ge p_{2y}$

# 19-21: Line Segment Intersection

- Given a set of *n* line segments, do any of them intersect?
  - What is a brute force method for solving this problem?
  - How long does it take (if there are *n* total line segments)

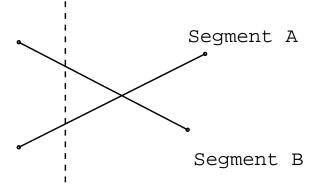
### 19-22: Line Segment Intersection

- Given a set of *n* line segments, do any of them intersect?
  - What is a brute force method for solving this problem?
    - Check each pair of line segments, see if they intersect using the previous technique
  - How long does it take (if there are *n* total line segments)
    - Each of the *n* segments needs to be comparted to n-1 other segments, for a total time of  $O(n^2)$
- We can do better!

### 19-23: Line Segment Intersection

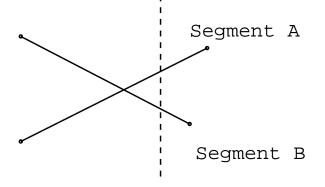
- Basic idea:
  - Assume that there are no vertical line segments
  - Sweep a vertical line across the segments
  - Segment A is above segment B at the line, and as we move the line to the right, Segment B becomes above Segment A, then the segments have crossed

#### 19-24: Line Segment Intersection



• Segment B is above Segment A

# 19-25: Line Segment Intersection



#### CS673-2016F-19

- Segment A is above Segment B
- The two segments must have crossed

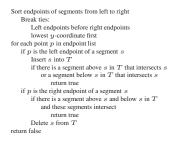
#### 19-26: Line Segment Intersection

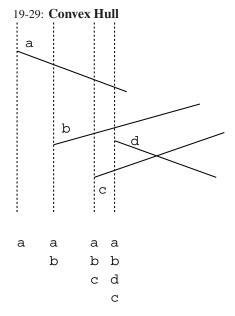
- Maintain an ordered list of the segments that intersect with the current sweep line
- Whenever two segments become adjacent on this list, check to see if they intersect
- Only need to check endpoints of segments

#### 19-27: Line Segment Intersection

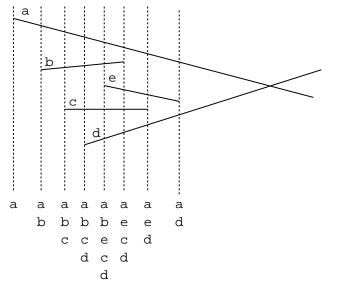
- Maintian a data structure that lets us:
  - Insert a segment s into T
  - Delete a segment s from T
  - Find the segment above s in T
  - Find the segment below s in T
- Use a red-black tree, using cross products to see if segment 1 is above segment 2 at a certain point

#### 19-28: Line Segment Intersection





# 19-30: Convex Hull

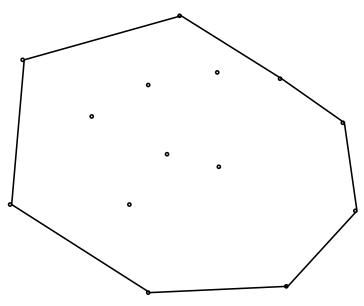


# 19-31: Convex Hull

- Given a set of points, what is the smallest convex polygon that contains all points
- Alternately, if all of the points were nails in a board, and we placed a rubber band around all of them, what shape would it form?

19-32: Convex Hull

19-33: Convex Hull



19-34: Convex Hull

- Several computational geometry problems have finding the convex hull as a subproblem
  - Like many graph algorithms have finding a topological sort as a subproblem
- For instance: Finding the two furthest points
  - Must lie on the convex hull

### 19-35: Convex Hull

- Graham's Scan Algorithm
  - Go through all the points in order
  - Push points onto a stack
  - Pop off points that don't form part of the convex hull
  - When we're done, stack contains the points in the convex hull

#### 19-36: Convex Hull

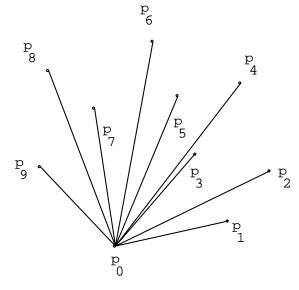
#### Gram-Scan

```
Let p_0 be the point with the minimum y-coordinate
Sort the points by increasing polar angle around p_0
Push p_0, p_1, and p_2 on the stack S
for i \leftarrow 3 to n do
while angle formed by top two points on S
doesn't turn left do
Pop
Push(p_i)
return S
```

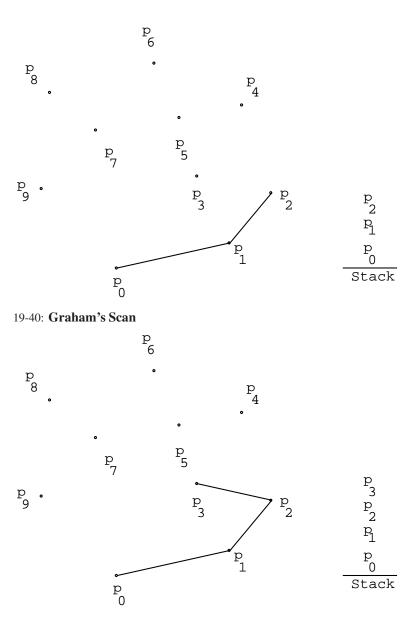
# 19-37: Graham's Scan



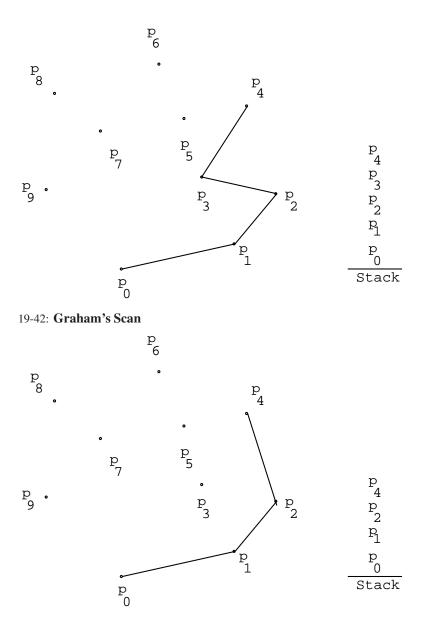
•



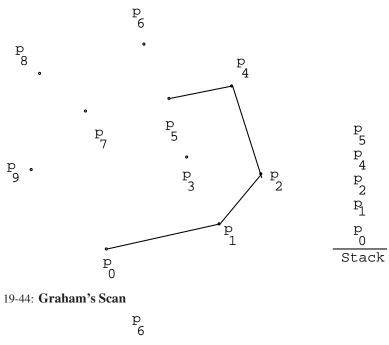
19-39: Graham's Scan

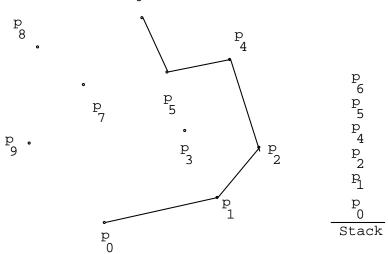


19-41: Graham's Scan

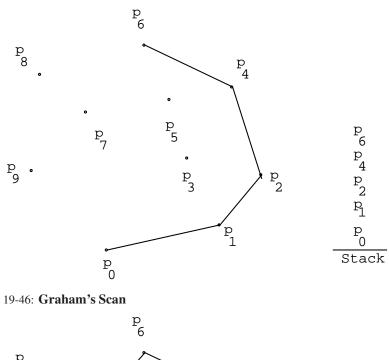


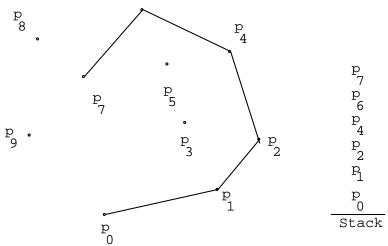
19-43: Graham's Scan



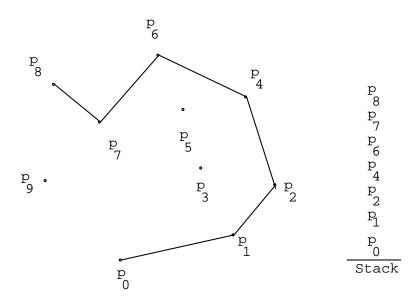


19-45: Graham's Scan

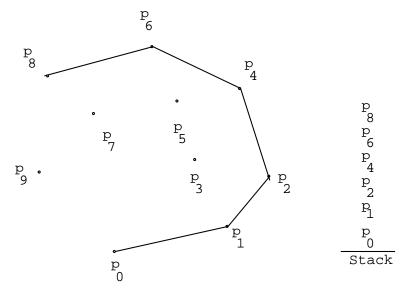




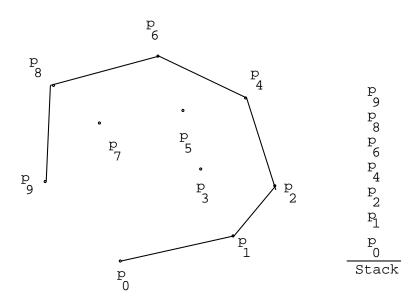
19-47: Graham's Scan

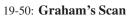


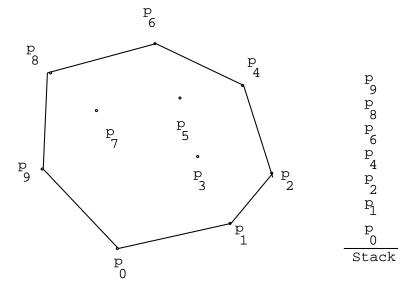
19-48: Graham's Scan



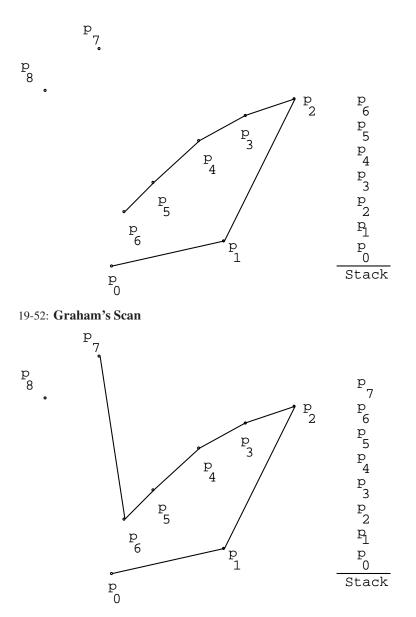
19-49: Graham's Scan



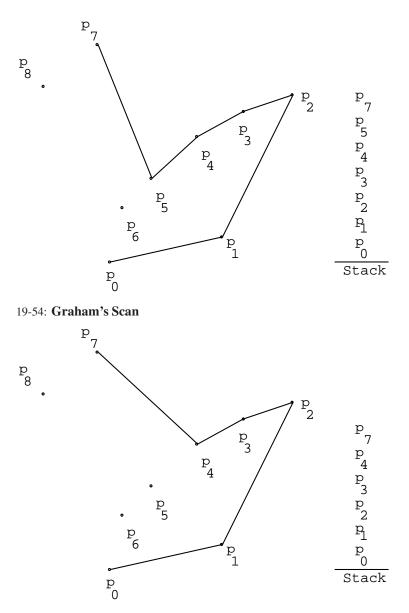




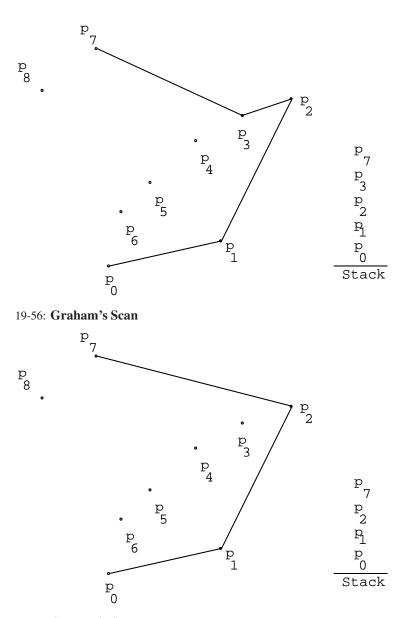
19-51: Graham's Scan



19-53: Graham's Scan



19-55: Graham's Scan



### 19-57: Graham's Scan

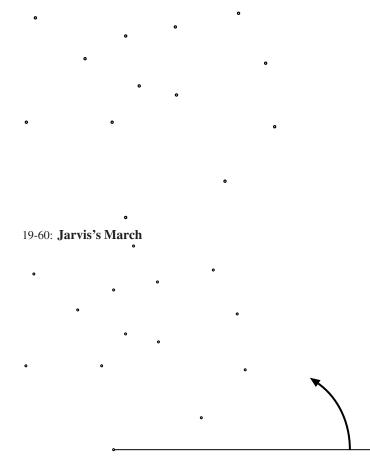
- Time required:
  - $O(n \lg n)$  to sort points by polar degree
    - Note that you don't need to calculate the polar degree, just determine if one vector is clockwise or counterclockwise of another can be done with a single cross product
  - Each element is added to the stack once, and removed at most once (each taking constant time) for a total time of O(n)
  - Total:  $O(n \lg n)$

### 19-58: Convex Hull

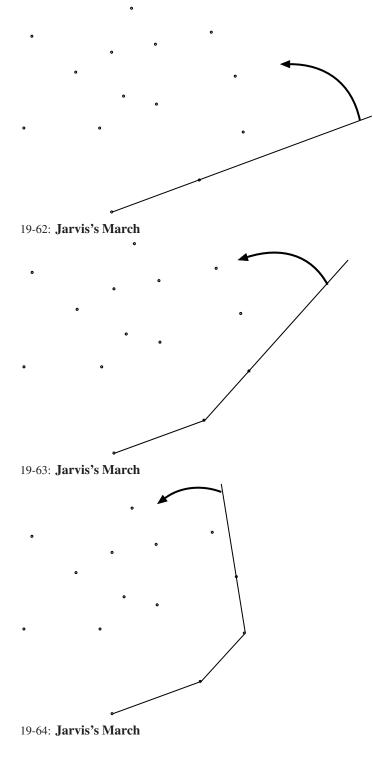
• Different Convex Hull algorithm

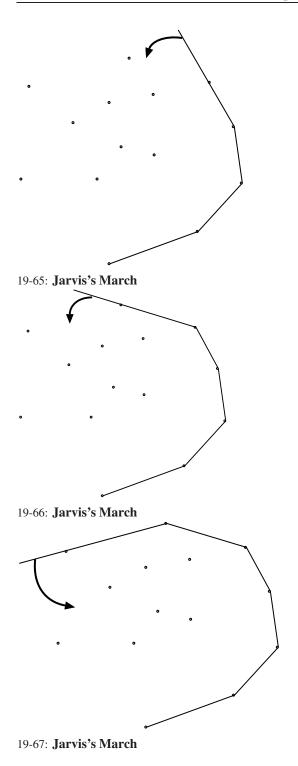
- Idea:
  - Attach a string to the lowest point
  - Rotate string counterclockwise, unti it hits a point this point is in the Convex Hull
  - Keep going until the highest point is reached
  - Continue around back to initial point

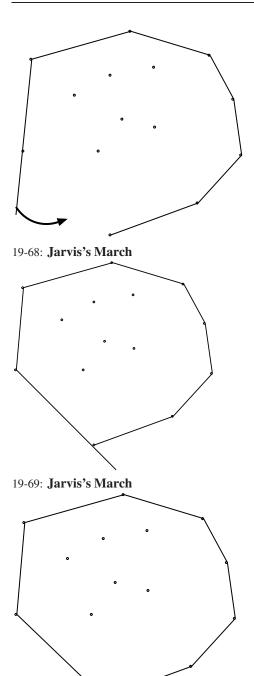
# 19-59: Jarvis's March



19-61: Jarvis's March







### 19-70: Jarvis's March

- How do we determine which point wraps next?
  - When we're going from lowest to highest point, the smallest polar angle between previous point and the next point
  - When going from highest point back to lowest point, smallest polar angle (from negative)

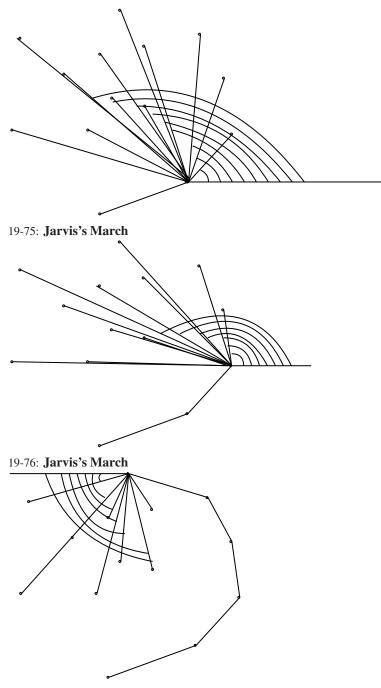
### 19-71: Jarvis's March

19-72: Jarvis's March

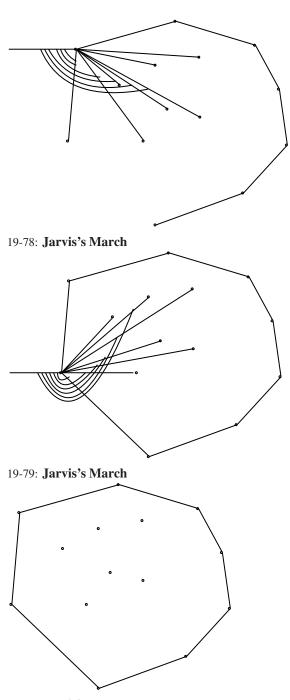
۰

. 19-73: Jarvis's March

19-74: Jarvis's March



19-77: Jarvis's March



# 19-80: Jarvis's March

- We don't need to actually compute polar angles
  - We just need to compare them, which can be done with a cross product
- From point  $p_k$ , comparing angles from  $p_i$  and  $p_j$  (going up)
  - Is  $\overline{p_k p_i}$  clockwise of  $\overline{p_k p_j}$ ?
  - (is  $(p_i p_k) \times (p_j p_k)$  positive)?

#### 19-81: Jarvis's March

- Time for Jarvis's march:
  - For each vertex in the convex hull, we need to look at up to *n* other vertices to find the next vertex in the convex hull.
  - Total time: O(nh), where h is the number of vertices in the convex hull
  - Is this better or worst than Graham's Scan

#### 19-82: Closest Pair of Points

- We have a large number of points  $p_1, \ldots, p_n$
- Want to determine which pair of points  $p_i, p_j$  is closest together
- How long would a brute force solution take?
- Can you think of another way?

#### 19-83: Closest Pair of Points

- Divide & Conquer
  - Divide the list points in half (by a vertical line)
  - Recursively determine the closest pair in each half
  - ... and then what?

#### 19-84: Closest Pair of Points

- Divide & Conquer
  - Divide the list points in half (by a vertical line)
  - Recursively determine the closest pair in each half
  - Smallest distance between points is the minimum of:
    - Smallest distance in left half of points
    - Smallest distance in right half of points
    - Smallest distance that crosses from left to right

#### 19-85: Closest Pair of Points

•

۰

19-86: Closest Pair of Points

### 19-87: Closest Pair of Points

- To find smallest distance that crosses from left to right:
  - If we compare all  $\frac{n}{2}$  elements in the left sublist with all  $\frac{n}{2}$  elements in the right sublist, how much time would that take?

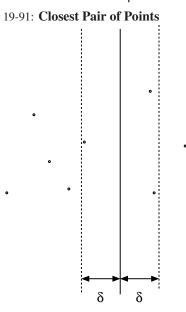
### 19-88: Closest Pair of Points

- To find smallest distance that crosses from left to right:
  - If we compare all  $\frac{n}{2}$  elements in the left sublist with all  $\frac{n}{2}$  elements in the right sublist, how much time would that take?
  - $\Theta(n^2)$ , no better than brute force solution!

# 19-89: Closest Pair of Points

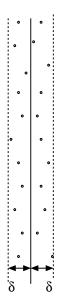
- To find smallest distance that crosses from left to right:
  - Let  $\delta$  be the smallest distance in the two sublists
  - Examine only the points that are within  $\delta$  of the centerline

#### 19-90: Closest Pair of Points

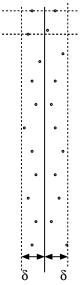


۰

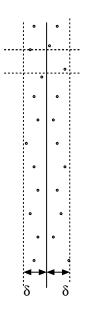
19-92: Closest Pair of Points



19-93: Closest Pair of Points

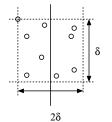


19-94: Closest Pair of Points



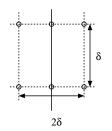
### 19-95: Closest Pair of Points

• How many points can be in the  $\delta \times 2\delta$  rectangle?



19-96: Closest Pair of Points

• How many points can be in the  $\delta \times 2\delta$  rectangle?



19-97: Closest Pair of Points

- Create two lists of the points:
  - One sorted by *x*-coordiate
  - One sorted by *y*-coordinate
- Call Find-Smallest using these two lists
  - Find-Smallest(XList,YList)

#### 19-98: Closest Pair of Points

```
\begin{aligned} & \text{FindSmallest}(L_x, L_y) \\ & \text{if } |L_x| \leq 3 \\ & \text{do brute force search on 3 points} \\ & \text{Split list } L_x \text{ in half} \\ & \text{Put first } 1/2 \text{ in } L_{XL} \\ & \text{Put second } 1/2 \text{ in } L_{XR} \\ & \text{Split list } L_Y \text{ in half} \\ & \text{For each point } p \text{ in } L_y: \\ & \text{If } p \in L_{XL}, \text{ put } p \text{ in } L_{YL} \\ & \text{If } p \in L_{XR}, \text{ put } p \text{ in } L_{YR} \\ & \delta \leftarrow \text{FindSmallest}(L_{XL}, L_{YL}) \\ & \delta \leftarrow \text{Min}(\delta, \text{FindSmallest}(L_{XR}, L_{YR}, \delta) \\ & \text{return } \delta \end{aligned}
```

#### 19-99: Closest Pair of Points

- Time:
  - Sorting:  $O(n \lg n)$  using mergesort
  - Recursive call:

$$T(1) = T(2) = T(3) = c_1$$
  
$$T(n) = 2T(n/2) + c_2 * n$$

- $\Theta(n \lg n)$  by the Master Method
- Total time:  $O(n \lg n)$