
Graduate Algorithms
CS673-20016F-02

Probabilistic Analysis

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


02-0: Hiring Problem

Need an office assistant

Employment Agency sends one candidate
every day

Interview that person, either hire that person
(and fire the old one), or keep old person

Always want the best person – always hire if
interviewee is better than current person



02-1: Hiring Problem

HIRE-ASSISTANT(n)

best <- 0

for i <- 1 to n do

if candidate[i] is better than candidate[best]

best <- i

hire candidate i

Cost to interview candidate is Ci

Cost to hire a candidate is Ch

Assume Ci is much less than Ch

Total cost: O(Ci ∗ n+ Ch ∗m), where m = # of
hirings



02-2: Hiring Problem

Best case cost?

Worst case cost?

Average cost?



02-3: Hiring Problem

Best case cost? Ci ∗ n+ Ch

Worst case cost? Ci ∗ n+ Ch ∗ n

Average cost?

Assume applicants come in random order

Each permutation of applicants is equally likely



02-4: Probability Review

Indicator variable associated with event A:

I{A} =

{

1 if A occurs

0 if A does not occur

Example: Flip a coin: Y is a random variable
representing the coin flip

XH = I{Y = H} =

{

1 if Y = H

0 otherwise



02-5: Probability Review

Expected value E[] of a random variable

Value you “expect” a random variable to have

Average (mean) value of the variable over many
trials

Does not have to equal the value of any
particular trial

Bus example(s)



02-6: Probability Review

Expected value E[] of a random variable

E[X] =
∑

all values x of X

x ∗ Pr{X = x}

When we want the “average case” running time of
an algorithm, we want the Expected Value of the
running time



02-7: Probability Review

XH = I{Y = H}

E[XH ] = E[I{Y = H}]

= 1 ∗ Pr{Y = H}+ 0 ∗ Pr{Y = T}

= 1 ∗ 1/2 + 0 ∗ 1/2

= 1/2



02-8: Probability Review

Expected # of heads in n coin flips

X = # of heads in n flips

Xi = indicator variable: coin flip i is heads



02-9: Probability Review

Expected # of heads in n coin flips

X = # of heads in n flips

Xi = indicator variable: coin flip i is heads

E[X] = E

[

n
∑

i=1

Xi

]

=
n

∑

i=1

E[Xi]

=
n

∑

i=1

1

2
=

n

2



02-10: Probability Review

For any event A, indicator variable XA = I{A}
E[XA] = Pr{A}

E[XA] = 1 ∗ Pr{A}+ 0 ∗ Pr{¬A}

= Pr{A}



02-11: Hiring Problem

Calculate the expected number of hirings

X = # of candidates hired

Xi = I{Candidate i is hired}

X = X1 +X2 + . . . +Xn

E[X] =



02-12: Hiring Problem

Calculate the expected number of hirings

X = # of candidates hired

Xi = I{Candidate i is hired}

X = X1 +X2 + . . . +Xn

E[X] = E

[

n
∑

i=1

Xi

]

=
n

∑

i=1

E[xi]

What is E[Xi]?



02-13: Hiring Problem

What is E[Xi]?

E[Xi] = Probability that the ith candidate is
hired

When is the ith candidate hired?



02-14: Hiring Problem

What is E[Xi]?

E[Xi] = Probability that the ith candidate is
hired

ith candidate hired when s/he is better than the
i− 1 candidates that came before

Assuming that all permutations of candidates
are equally likely, what is the probability that the
ith candidate is the best of the first i
candidates?



02-15: Hiring Problem

What is E[Xi]?

E[Xi] = Probability that the ith candidate is
hired

ith candidate hired when s/he is better than the
i− 1 candidates that came before

Assuming that all permutations of candidates
are equally likely, what is the probability that the
ith candidate is the best of the first i
candidates?

1

i



02-16: Hiring Problem

Probability that the ith candidate is best of first i is 1

i

Sanity Check: (Doing a few concrete examples as
a sanity check is often a good idea)

i = 1, probability that the first candidate is the
best so far = 1/1 = 1

i = 2: (1,2), (2,1) In one of the two
permutations, 2nd candidate is the best so far

i = 3: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1,
2), (3, 2, 1) In two of the 6 permutations, the 3rd
candidate is the best so far

Note that a few concrete examples do not prove

anything, but a counter-example can show that you
have made a mistake



02-17: Hiring Problem

Now that we know that E[Xi] =
1

i
, we can find the

expected number of hires:

E[X] = E

[

n
∑

i=1

Xi

]

=
n

∑

i=1

E[xi]

=
n

∑

i=1

1/i

= lnn+O(1)

∈ O(lg n)



02-18: Randomized Algorithms

In average-case analysis, we often assume that all
inputs are equally likely

In actuality, some inputs might be much more likely

If we’re really unlucky, the most likely inputs can
be the most costly (as in some implementations
of quicksort)

What can we do?



02-19: Randomized Algorithms

In average-case analysis, we often assume that all
inputs are equally likely

In actuality, some inputs might be much more likely

If we’re really unlucky, the most likely inputs can
be the most costly (as in some implementations
of quicksort)

What can we do?

Force all inputs to be equally likely, by
randomizing the input



02-20: Randomized Algorithms

In the hire-assistant problem, we can first randomly
permute the lists of candidates, and then run the
algorithm

Then, for any input, we’d be guaranteed that the

expected number of hires would be lnn+O(1)

How can we randomly permute a list, so that every
permutation is equally as likely?

That is, how can we shuffle a list, so that every
permutation is equally likely? Assume that we
have a good random number generator.



02-21: Randomized Algorithms

To create a random permutation (method 1):

Assign each element in the list a random
priority

Sort based on the priority

n <- length(A)
for i <-1 to n do

Priority[i] = Random(1,n*n*n)
sort A (using Priority as keys)

Why n3?

Time?



02-22: Randomized Algorithms

To create a random permutation (method 2):

n <- length(A)
for i <- 1 to n do

swap(A[i], A[Random(i,n)])



02-23: On-line Hiring Problem

Interview candidates one at a time

After each person is interviewed:

Tell them at once they are not wanted

Hire them (and stop the interview process)

How can we maximize the probability that we get
the best person (assume that they come in random
order – we can always randomize the input to
insure this)



02-24: On-line Hiring Problem

Algorithm:

Interview first k candidates, reject them all

Continue to interview candidates, hiring the first
one that is better than anyone seen so far

Problems? Can we do better?



02-25: On-line Hiring Problem

Interview first k candidates, reject them all

Continue to interview candidates, hiring the first
one that is better than anyone seen so far

Analysis:

The bigger k is, the larger the chance that we see
the best person in the first k (and don’t hire the
best person).

The smaller k is, the larger the chance that we stop
too soon.

How should we pick k?



02-26: On-line Hiring Problem

S = we pick the best applicant

Si = the best applicant is i, and we pick i.

Pr{S} =
n

∑

i=k+1

Pr{Si}

Why k + 1 instead of 1?

When is the best person picked?



02-27: On-line Hiring Problem

Pr{s} =
n

∑

i=k+1

Pr{Si}

Why k + 1 instead of 1?

Pr{SI} = 0 if i < k, since we never pick the
first k people

When is the best person picked?

If the best person is interviewed, s/he will be
picked. The best person is interviewed when
candidates k + 1..best− 1 are all worse than
the best in 1..k



02-28: On-line Hiring Problem

Bi == ith candidate is the best

Oi == none of applicants in k + 1..i− 1 are picked

Si (in terms of Bi and Oi) = ?



02-29: On-line Hiring Problem

Bi = ith candidate is the best

Oi = none of applicants in k + 1..i− 1 are picked

Si = Bi ∧Oi

Pr{Si} = Pr{Bi ∧Oi}

= Pr{Bi} ∗ Pr{Oi|Bi}

= Pr{Bi} ∗ Pr{Oi}

= (1/n) ∗ k/(i− 1)



02-30: On-line Hiring Problem

Pr{Si} = (1/n) ∗ k/(i− 1)

Pr{S} =
n

∑

i=k+1

k

n(i− 1)

=
k

n

n
∑

i=k+1

1

i− 1

=
k

n

n−1
∑

i=k

1

i

How do we find a value of a variable to maximize a
function?



02-31: On-line Hiring Problem

Hard to take a derivative of a summation. However:

∫ n+1

m

f(x)dx ≤
n

∑

i=m

f(i) ≤

∫ n

m−1

f(x)dx

(if f(x) is monotonically decreasing)
Looking at just the lower bound:

k

n

∫ n

k

1

x
dx ≤

k

n

n−1
∑

i=k

1

i

k

n
(lnn− ln k) ≤ Pr{S}



02-32: On-line Hiring Problem

Maximizing the lower bound:

To maximize k/n(lnn− ln k): Take first derivative
with respect to k, set to 0.

(recall the product rule for derivatives:
D[f(k)g(k)] = D[f(k)]g(k) + f(k)D[g(k)])



02-33: On-line Hiring Problem

To maximize k/n(lnn− ln k): Take first derivative
with respect to k, set to 0.

(recall the product rule for derivatives:
D[f(k)g(k)] = D[f(k)]g(k) + f(k)D[g(x)])

1

n
(lnn− ln k − 1) = 0

ln k = lnn− 1

ln k = lnn− ln e

ln k = ln
n

e

k =
n

e



02-34: On-line Hiring Problem

Interview just under 1/3 of the applicants (hiring
none of them)

Hire the first person better than anyone seen so far

Probability of getting the best person ≥
(n/e)/n(lnn− ln(n/e)) = 1/e(ln e) = 1/e ≈ 0.37


	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probability Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probability Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probability Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probability Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probability Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probability Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probability Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Randomized Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Randomized Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Randomized Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Randomized Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Randomized Algorithmsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} On-line Hiring Problemaddtocounter {blocknumber}{1}

