CS673-20016F-02 Probabilistic Analysis

02-0: Hiring Problem

e Need an office assistant

e Employment Agency sends one candidate every day
e Interview that person, either hire that person (and fire the old one), or keep old person

e Always want the best person — always hire if interviewee is better than current person
02-1: Hiring Problem

HIRE-ASSISTANT (n)
best <= 0
for 1 <- 1 to n do
if candidate[i] 1s better than candidate[best]
best <- i
hire candidate i

e Cost to interview candidate is C;
e Cost to hire a candidate is C},
e Assume C; is much less than C},
e Total cost: O(C; * n + C}, * m), where m = # of hirings
02-2: Hiring Problem
e Best case cost?
e Worst case cost?
e Average cost?
02-3: Hiring Problem
e Best case cost? C; xn + Cj,
e Worst case cost? C; xn+ Cp, xn
e Average cost?

e Assume applicants come in random order

e Each permutation of applicants is equally likely
02-4: Probability Review

e Indicator variable associated with event A:

1 if A occurs
I{A}_{ 0 if A does not occur

e Example: Flip a coin: Y is a random variable representing the coin flip

1if Y=H

Xy =I{Y =H} = { 0 otherwise
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02-5: Probability Review

e Expected value E[] of a random variable

e Value you “expect” a random variable to have
e Average (mean) value of the variable over many trials
e Does not have to equal the value of any particular trial

e Bus example(s)

02-6: Probability Review

e Expected value E[] of a random variable

E[X] = > axPr{X=ua}

all values z of X

e When we want the “average case” running time of an algorithm, we want the Expected Value of the running
time

02-7: Probability Review
Xy =I{Y =H}

ElXy] = EU{Y = H)]
1« Pr{Y =H}+0xPr{Y =T}
= 1%1/240%1/2

1/2

02-8: Probability Review

e Expected # of heads in n coin flips

e X =# of heads in n flips

e X, =indicator variable: coin flip 7 is heads
02-9: Probability Review

e Expected # of heads in n coin flips

e X =# of heads in n flips

e X, = indicator variable: coin flip ¢ is heads

E[X] = E

02-10: Probability Review
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e For any event A, indicator variable X4 = I{A} E[X 4] = Pr{A}

E[X4] = 1xPr{A}+ 0=« Pr{-A}
= Pr{A}
02-11: Hiring Problem
e Calculate the expected number of hirings
e X = # of candidates hired
e X, = I{Candidate i is hired}
e X=X +Xo+...+X,
E[X] =
02-12: Hiring Problem
e (Calculate the expected number of hirings
e X = # of candidates hired
e X, = I{Candidate i is hired}
e X=X +Xo+...+X,
EX] = E|Y Xi]
i=1
= 2_Blai
i=1

e Whatis E[X;]?
02-13: Hiring Problem
e Whatis E[X;]?

e E[X;] = Probability that the ith candidate is hired
e When is the ith candidate hired?

02-14: Hiring Problem
e Whatis E[X;]?

e FE[X;] = Probability that the ith candidate is hired

o jth candidate hired when s/he is better than the ¢ — 1 candidates that came before

e Assuming that all permutations of candidates are equally likely, what is the probability that the ¢th candi-
date is the best of the first ¢ candidates?

02-15: Hiring Problem
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e Whatis E[X;]?
e E[X;] = Probability that the ith candidate is hired

e ;th candidate hired when s/he is better than the ¢ — 1 candidates that came before

e Assuming that all permutations of candidates are equally likely, what is the probability that the ith candi-
date is the best of the first ¢ candidates?
1

o =
K2

02-16: Hiring Problem
Probability that the ¢th candidate is best of first ¢ is %

e Sanity Check: (Doing a few concrete examples as a sanity check is often a good idea)

e 7 = 1, probability that the first candidate is the best so far=1/1 =1
e i =2:(1,2),(2,1) In one of the two permutations, 2nd candidate is the best so far

e i =3:(1,2,3),(1,3,2),(2,1,3), (2,3, 1), 3, 1, 2), (3, 2, 1) In two of the 6 permutations, the 3rd
candidate is the best so far

o Note that a few concrete examples do not prove anything, but a counter-example can show that you have made
a mistake

02-17: Hiring Problem

e Now that we know that E[X;] = %, we can find the expected number of hires:

E[X] = E

)
i=1

= ZE[Iz‘]

= ) 1/i

i=1
= Inn+0(1)
€ O(lgn)

If the candidates are seen randomly
02-18: Randomized Algorithms

e In average-case analysis, we often assume that all inputs are equally likely
e In actuality, some inputs might be much more likely

e If we’re really unlucky, the most likely inputs can be the most costly (as in some implementations of
quicksort)

e What can we do?
02-19: Randomized Algorithms

e In average-case analysis, we often assume that all inputs are equally likely



CS673-20016F-02 Probabilistic Analysis 5

e In actuality, some inputs might be much more likely

e If we’re really unlucky, the most likely inputs can be the most costly (as in some implementations of
quicksort)

e What can we do?

e Force all inputs to be equally likely, by randomizing the input

02-20: Randomized Algorithms

e In the hire-assistant problem, we can first randomly permute the lists of candidates, and then run the algorithm
e Then, for any input, we’d be guaranteed that the expected number of hires would be Inn + O(1)
e How can we randomly permute a list, so that every permutation is equally as likely?

e That is, how can we shuffle a list, so that every permutation is equally likely? Assume that we have a good
random number generator.

02-21: Randomized Algorithms

e To create a random permutation (method 1):

e Assign each element in the list a random priority

e Sort based on the priority

n <- length (A)
for 1 <=1 to n do

Priority[i] = Random(l,n#*n=sn)
sort A (using Priority as keys)

e Why n3?
e Time?

02-22: Randomized Algorithms

e To create a random permutation (method 2):

n <- length (A)
for i <-— 1 to n do
swap (A[i], A[Random(i,n)])

02-23: On-line Hiring Problem

e Interview candidates one at a time
e After each person is interviewed:

e Tell them at once they are not wanted

e Hire them (and stop the interview process)

e How can we maximize the probability that we get the best person (assume that they come in random order — we
can always randomize the input to insure this)



CS673-20016F-02 Probabilistic Analysis 6

02-24: On-line Hiring Problem
Algorithm:

e Interview first k candidates, reject them all

e Continue to interview candidates, hiring the first one that is better than anyone seen so far

Problems? Can we do better?
02-25: On-line Hiring Problem

e Interview first k candidates, reject them all

e Continue to interview candidates, hiring the first one that is better than anyone seen so far

Analysis:

e The bigger k is, the larger the chance that we see the best person in the first k£ (and don’t hire the best person).
e The smaller k is, the larger the chance that we stop too soon.

e How should we pick k?

02-26: On-line Hiring Problem
e S = we pick the best applicant
e S; =the best applicant is ¢, and we pick 7.

n

Pr{S} = Z Pr{S;}

i=k+1
e Why k + 1 instead of 1?
e When is the best person picked?

02-27: On-line Hiring Problem

n

Pr{s} = Z Pr{S;}

i=k+1
e Why k + 1 instead of 1?
e Pr{Sr} =0ifi < k, since we never pick the first k people
e When is the best person picked?

o If the best person is interviewed, s/he will be picked. The best person is interviewed when candidates
k 4 1..best — 1 are all worse than the best in 1..k

02-28: On-line Hiring Problem

e B, == ith candidate is the best

e O; ==none of applicants in k + 1.. — 1 are picked
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S; (in terms of B; and O;) = ?
02-29: On-line Hiring Problem

e B, =ith candidate is the best
e O, =none of applicants in k + 1..¢ — 1 are picked

S; = B; A\ O;

Pr{S;} = Pr{B;ANO;}
= Pr{B;}* Pr{O;|B;}
= Pr{B;}* Pr{O;}
(1/n)*k/(i—1)

02-30: On-line Hiring Problem

Pr{S} = (1/n)xk/(i—1)

Pr{S}
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How do we find a value of a variable to maximize a function?
02-31: On-line Hiring Problem

Hard to take a derivative of a summation. However:

(if f () is monotonically decreasing)
Looking at just the lower bound:
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02-32: On-line Hiring Problem
Maximizing the lower bound:

e To maximize k/n(Inn — In k): Take first derivative with respect to k, set to 0.

e (recall the product rule for derivatives: D[f(k)g(k)] = D[f(k)]g(k) + f(k)D[g(k)])
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02-33: On-line Hiring Problem

e To maximize k/n(Inn — In k): Take first derivative with respect to k, set to 0.

e (recall the product rule for derivatives: D[f(k)g(k)] = D[f(k)]g(k) + f(k)D[g(z)])

1
—(Inn—-Ink—-1) = 0
n(nn n )
Ink = Inn-1
Ink = Inn-—Ine
Ink = InZ
e
o= 2
e

02-34: On-line Hiring Problem

e Interview just under 1/3 of the applicants (hiring none of them)
e Hire the first person better than anyone seen so far

e Probability of getting the best person > (n/e)/n(Inn —In(n/e)) = 1/e(lne) = 1/e ~ 0.37



