
CS673-20016F-02 Probabilistic Analysis 1

02-0: Hiring Problem

• Need an office assistant

• Employment Agency sends one candidate every day

• Interview that person, either hire that person (and fire the old one), or keep old person

• Always want the best person – always hire if interviewee is better than current person

02-1: Hiring Problem

HIRE-ASSISTANT(n)

best <- 0

for i <- 1 to n do

if candidate[i] is better than candidate[best]

best <- i

hire candidate i

• Cost to interview candidate is Ci

• Cost to hire a candidate is Ch

• Assume Ci is much less than Ch

• Total cost: O(Ci ∗ n+ Ch ∗m), where m = # of hirings

02-2: Hiring Problem

• Best case cost?

• Worst case cost?

• Average cost?

02-3: Hiring Problem

• Best case cost? Ci ∗ n+ Ch

• Worst case cost? Ci ∗ n+ Ch ∗ n

• Average cost?

• Assume applicants come in random order

• Each permutation of applicants is equally likely

02-4: Probability Review

• Indicator variable associated with event A:

I{A} =

{

1 if A occurs
0 if A does not occur

• Example: Flip a coin: Y is a random variable representing the coin flip

XH = I{Y = H} =

{

1 if Y = H
0 otherwise



CS673-20016F-02 Probabilistic Analysis 2

02-5: Probability Review

• Expected value E[] of a random variable

• Value you “expect” a random variable to have

• Average (mean) value of the variable over many trials

• Does not have to equal the value of any particular trial

• Bus example(s)

02-6: Probability Review

• Expected value E[] of a random variable

E[X ] =
∑

all values x of X

x ∗ Pr{X = x}

• When we want the “average case” running time of an algorithm, we want the Expected Value of the running

time

02-7: Probability Review

XH = I{Y = H}

E[XH ] = E[I{Y = H}]

= 1 ∗ Pr{Y = H}+ 0 ∗ Pr{Y = T }

= 1 ∗ 1/2 + 0 ∗ 1/2

= 1/2

02-8: Probability Review

• Expected # of heads in n coin flips

• X = # of heads in n flips

• Xi = indicator variable: coin flip i is heads

02-9: Probability Review

• Expected # of heads in n coin flips

• X = # of heads in n flips

• Xi = indicator variable: coin flip i is heads

E[X ] = E

[

n
∑

i=1

Xi

]

=

n
∑

i=1

E[Xi]

=
n
∑

i=1

1

2
=

n

2

02-10: Probability Review



CS673-20016F-02 Probabilistic Analysis 3

• For any event A, indicator variable XA = I{A} E[XA] = Pr{A}

E[XA] = 1 ∗ Pr{A}+ 0 ∗ Pr{¬A}

= Pr{A}

02-11: Hiring Problem

• Calculate the expected number of hirings

• X = # of candidates hired

• Xi = I{Candidate i is hired}

• X = X1 +X2 + . . .+Xn

E[X ] =

02-12: Hiring Problem

• Calculate the expected number of hirings

• X = # of candidates hired

• Xi = I{Candidate i is hired}

• X = X1 +X2 + . . .+Xn

E[X ] = E

[

n
∑

i=1

Xi

]

=

n
∑

i=1

E[xi]

• What is E[Xi]?

02-13: Hiring Problem

• What is E[Xi]?

• E[Xi] = Probability that the ith candidate is hired

• When is the ith candidate hired?

02-14: Hiring Problem

• What is E[Xi]?

• E[Xi] = Probability that the ith candidate is hired

• ith candidate hired when s/he is better than the i− 1 candidates that came before

• Assuming that all permutations of candidates are equally likely, what is the probability that the ith candi-

date is the best of the first i candidates?

02-15: Hiring Problem



CS673-20016F-02 Probabilistic Analysis 4

• What is E[Xi]?

• E[Xi] = Probability that the ith candidate is hired

• ith candidate hired when s/he is better than the i− 1 candidates that came before

• Assuming that all permutations of candidates are equally likely, what is the probability that the ith candi-

date is the best of the first i candidates?

• 1

i

02-16: Hiring Problem

Probability that the ith candidate is best of first i is 1

i

• Sanity Check: (Doing a few concrete examples as a sanity check is often a good idea)

• i = 1, probability that the first candidate is the best so far = 1/1 = 1

• i = 2: (1,2), (2,1) In one of the two permutations, 2nd candidate is the best so far

• i = 3: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) In two of the 6 permutations, the 3rd

candidate is the best so far

• Note that a few concrete examples do not prove anything, but a counter-example can show that you have made

a mistake

02-17: Hiring Problem

• Now that we know that E[Xi] =
1

i
, we can find the expected number of hires:

E[X ] = E

[

n
∑

i=1

Xi

]

=

n
∑

i=1

E[xi]

=
n
∑

i=1

1/i

= lnn+O(1)

∈ O(lg n)

If the candidates are seen randomly

02-18: Randomized Algorithms

• In average-case analysis, we often assume that all inputs are equally likely

• In actuality, some inputs might be much more likely

• If we’re really unlucky, the most likely inputs can be the most costly (as in some implementations of

quicksort)

• What can we do?

02-19: Randomized Algorithms

• In average-case analysis, we often assume that all inputs are equally likely



CS673-20016F-02 Probabilistic Analysis 5

• In actuality, some inputs might be much more likely

• If we’re really unlucky, the most likely inputs can be the most costly (as in some implementations of

quicksort)

• What can we do?

• Force all inputs to be equally likely, by randomizing the input

02-20: Randomized Algorithms

• In the hire-assistant problem, we can first randomly permute the lists of candidates, and then run the algorithm

• Then, for any input, we’d be guaranteed that the expected number of hires would be lnn+O(1)

• How can we randomly permute a list, so that every permutation is equally as likely?

• That is, how can we shuffle a list, so that every permutation is equally likely? Assume that we have a good

random number generator.

02-21: Randomized Algorithms

• To create a random permutation (method 1):

• Assign each element in the list a random priority

• Sort based on the priority

n <- length(A)

for i <-1 to n do

Priority[i] = Random(1,n*n*n)

sort A (using Priority as keys)

• Why n3?

• Time?

02-22: Randomized Algorithms

• To create a random permutation (method 2):

n <- length(A)

for i <- 1 to n do

swap(A[i], A[Random(i,n)])

02-23: On-line Hiring Problem

• Interview candidates one at a time

• After each person is interviewed:

• Tell them at once they are not wanted

• Hire them (and stop the interview process)

• How can we maximize the probability that we get the best person (assume that they come in random order – we

can always randomize the input to insure this)



CS673-20016F-02 Probabilistic Analysis 6

02-24: On-line Hiring Problem

Algorithm:

• Interview first k candidates, reject them all

• Continue to interview candidates, hiring the first one that is better than anyone seen so far

Problems? Can we do better?

02-25: On-line Hiring Problem

• Interview first k candidates, reject them all

• Continue to interview candidates, hiring the first one that is better than anyone seen so far

Analysis:

• The bigger k is, the larger the chance that we see the best person in the first k (and don’t hire the best person).

• The smaller k is, the larger the chance that we stop too soon.

• How should we pick k?

02-26: On-line Hiring Problem

• S = we pick the best applicant

• Si = the best applicant is i, and we pick i.

Pr{S} =

n
∑

i=k+1

Pr{Si}

• Why k + 1 instead of 1?

• When is the best person picked?

02-27: On-line Hiring Problem

Pr{s} =

n
∑

i=k+1

Pr{Si}

• Why k + 1 instead of 1?

• Pr{SI} = 0 if i < k, since we never pick the first k people

• When is the best person picked?

• If the best person is interviewed, s/he will be picked. The best person is interviewed when candidates

k + 1..best− 1 are all worse than the best in 1..k

02-28: On-line Hiring Problem

• Bi == ith candidate is the best

• Oi == none of applicants in k + 1..i− 1 are picked



CS673-20016F-02 Probabilistic Analysis 7

Si (in terms of Bi and Oi) = ?

02-29: On-line Hiring Problem

• Bi = ith candidate is the best

• Oi = none of applicants in k + 1..i− 1 are picked

Si = Bi ∧Oi

Pr{Si} = Pr{Bi ∧Oi}

= Pr{Bi} ∗ Pr{Oi|Bi}

= Pr{Bi} ∗ Pr{Oi}

= (1/n) ∗ k/(i− 1)

02-30: On-line Hiring Problem

Pr{Si} = (1/n) ∗ k/(i− 1)

Pr{S} =

n
∑

i=k+1

k

n(i− 1)

=
k

n

n
∑

i=k+1

1

i− 1

=
k

n

n−1
∑

i=k

1

i

How do we find a value of a variable to maximize a function?

02-31: On-line Hiring Problem

Hard to take a derivative of a summation. However:

∫ n+1

m

f(x)dx ≤

n
∑

i=m

f(i) ≤

∫ n

m−1

f(x)dx

(if f(x) is monotonically decreasing)

Looking at just the lower bound:

k

n

∫ n

k

1

x
dx ≤

k

n

n−1
∑

i=k

1

i

k

n
(lnn− ln k) ≤ Pr{S}

02-32: On-line Hiring Problem

Maximizing the lower bound:

• To maximize k/n(lnn− ln k): Take first derivative with respect to k, set to 0.

• (recall the product rule for derivatives: D[f(k)g(k)] = D[f(k)]g(k) + f(k)D[g(k)])



CS673-20016F-02 Probabilistic Analysis 8

02-33: On-line Hiring Problem

• To maximize k/n(lnn− ln k): Take first derivative with respect to k, set to 0.

• (recall the product rule for derivatives: D[f(k)g(k)] = D[f(k)]g(k) + f(k)D[g(x)])

1

n
(lnn− ln k − 1) = 0

ln k = lnn− 1

ln k = lnn− ln e

ln k = ln
n

e

k =
n

e

02-34: On-line Hiring Problem

• Interview just under 1/3 of the applicants (hiring none of them)

• Hire the first person better than anyone seen so far

• Probability of getting the best person ≥ (n/e)/n(lnn− ln(n/e)) = 1/e(ln e) = 1/e ≈ 0.37


