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21-0: Classes of Problems

Consider three problem classes:

Polynomial (P)

Nondeterminisitic Polynomial (NP)

NP-Complete

(only scratch the surface, take Automata Theory to
go in depth)



21-1: Class P

Given a problem, we can find a solution in
polynomial time

Time is polynomial in the length of the problem
description

Encode the problem in some resonable way
(like a string S)

Can create a solution to the problem in time

O(|S|k), for some constant k.



21-2: Class P Example

Reachability

Given a Graph G, and two vertices x and y, is
there a path from x to y in G?

Encode the graph as an adjacency list

Can solve the problem in polynomial time

DFS



21-3: Euler Cycles

Given an undirected graph G, is there a cycle that
traverses every edge exactly once?



21-4: Euler Cycles

Given an undirected graph G, is there a cycle that
traverses every edge exactly once?
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21-5: Euler Cycles

We can determine if a graph G has an Euler cycle
in polynomial time.

A graph G has an Euler cycle if and only if:

G is connected

All vertices in G have an even # of adjacent
edges



21-6: Euler Cycles

Pick any vertex, start following edges (only
following an edge once) until you reach a “dead
end” (no untraversed edges from the current node).

Must be back at the node you started with

Why?

Pick a new node with untraversed edges, create a
new cycle, and splice it in

Repeat until all edges have been traversed



21-7: Class P Example

Almost every algorithm we’ve seen so far has been
in P.

Possible exception: Knapsack problem

If a problem is not in P, it takes exponential time to
solve

Not practical for large problems



21-8: NP

Nondeterministic Polynomial (NP) problems:

Given a solution, that solution Can be verified in
polynomial time

If we could guess a solution to the problem
(that’s the Non-deterministic part), we could
verify the solution quickly (polynomial time)

All problems in P are also in NP

Most problems are in NP



21-9: NP – Example

Reachability is also in NP

Given a Graph G, and two vertices x and y, is
there a path from x to y in G?

Given a graph G and two verticies x and y, we can
determine if the path does in fact connect x and y
ing G, in polynomial time

Make sure each edge in the path exists in the
graph

All problems in P are also in NP



21-10: Hamiltonian Cycles

Given an undirected graph G, is there a cycle that
visits every vertex exactly once?



21-11: Hamiltonian Cycles

Given an undirected graph G, is there a cycle that
visits every vertex exactly once?



21-12: Hamiltonian Cycles

Given an undirected graph G, is there a cycle that
visits every vertex exactly once?

Very similar to the Euler Cycle problem

Verifyable in polynomial time

No known polynomial time solution



21-13: Satisfiability

A Boolean Formula in Conjunctive Normal Form
(CNF) is a conjunction of disjunctions.

(x1 ∨ x2) ∧ (x3 ∨ x2 ∨ x1) ∧ (x5)

(x3 ∨ x1 ∨ x5) ∧ (x1 ∨ x5 ∨ x3) ∧ (x5)

A Clause is a group of variables xi (or negated

variables xj) connected by ORs (∨)

A Formula is a group of clauses, connected by

ANDs (∧)



21-14: Satisfiability

Satisfiability Problem: Given a formula in
Conjunctive Normal Form, is there a set of truth
values for the variables in the formula which makes
the formula true?

(x1 ∨ x4) ∧ (x2 ∨ x4) ∧ (x3 ∨ x2)∧
(x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4)

Satisfiable: x1 = T, x2 = F, x3 = T, x4 = F

(x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

Not Satisfiable



21-15: Class NP-Complete

A problem is NP-Complete if:

Problem is NP

If you could solve the problem in polynomial
time, then you could solve all NP problems in
polynomial time

Reduction:

Given problem A, create an instance of problem
B (in polynomial time)

Solution to problem B gives a solution to
problem A

If we could solve B, in polynomial time, we
could solve A



21-16: Reduction Example

Given any instance of the Hamiltonian Cycle
Problem:

We can (in polynomial time) create an instance
of Satisfiability

That is, given any graph G, we can create a
boolean formula f , such that f is satisfiable if
and only if there is a Hamiltonian Cycle in G

If we could solve Satisfiability in Polynomial Time,
we could solve the Hamiltonian Cycle problem in
Polynomial Time



21-17: Reduction Example

Given a graph G with n vertices, we will create a

formula with n2 variables:

x11, x12, x13, . . . x1n

x21, x22, x23, . . . x2n

. . .
xn1, xn2, xn3, . . . xnn

Design our formula such that xij will be true if and

only if the ith element in a Hamiltonian Circuit of G
is vertex # j



21-18: Reduction Example

For our set of n2 variables xij, we need to write a

formula that ensures that:

For each i, there is exactly one j such that xij =
true

For each j, there is exactly one i such that xij =
true

If xij and x(i+1)k are both true, then there must

be a link from vj to vk in the graph G



21-19: Reduction Example

For each i, there is exactly one j such that xij =
true

For each i in 1 . . . n, add the rules:
(xi1 ∨ xi2 ∨ . . . ∨ xin)

This ensures that for each i, there is at least one j
such that xij = true

(This adds n clauses to the formula)



21-20: Reduction Example

For each i, there is exactly one j such that xij =
true

for each i in 1 . . . n
for each j in 1 . . . n

for each k in 1 . . . n j 6= k
Add rule (xij ∨ xik)

This ensures that for each i, there is at most one j
such that xij = true

(this adds a total of n3 clauses to the formula)



21-21: Reduction Example

For each j, there is exactly one i such that xij =
true

For each j in 1 . . . n, add the rules:
(x1j ∨ x2j ∨ . . . ∨ xnj)

This ensures that for each j, there is at least one i
such that xij = true

(This adds n clauses to the formula)



21-22: Reduction Example

For each j, there is exactly one i such that xij =
true

for each j in 1 . . . n
for each i in 1 . . . n

for each k in 1 . . . n
Add rule (xij ∨ xkj)

This ensures that for each j, there is at most one i
such that xij = true

(This adds a total of n3 clauses to the formula)



21-23: Reduction Example

If xij and x(i+1)k are both true, then there must be a

link from vi to vk in the graph G

for each i in 1 . . . (n− 1)
for each j in 1 . . . n

for each k in 1 . . . n
if edge (vj, vk) is not in the graph:

Add rule (xij ∨ x(i+1)k)

(This adds no more than n3 clauses to the formula)



21-24: Reduction Example

If xnj and x0k are both true, then there must be a

link from vi to vk in the graph G (looping back to
finish cycle)

for each j in 1 . . . n
for each k in 1 . . . n

if edge (vn, v0) is not in the graph:
Add rule (xnj ∨ x0k)

(This adds no more than n2 clauses to the formula)



21-25: Reduction Example

In order for this formula to be satisfied:

For each i, there is exactly one j such that xij

is true

For each j, there is exactly one i such that xji

is true

if xij is true, and x(i+1)k is true, then there is an

arc from vj to vk in the graph G

Thus, the formula can only be satisfied if there is a
Hamiltonian Cycle of the graph



21-26: Proving NP-Completeness

Once you have the first NP-complete problem,
easy to find more

Given an NP-Complete problem P

Different problem P ′

Polynomial-time reduction from P to P ′

P ′ must be NP-Complete



21-27: Proving NP-Completeness

First NP-Complete problem: Satisfiability (SAT)

SAT is NP-Complete

By reduction from the universal Turing machine

Reduce any algorithm that guesses and verifies
to SAT

For the actual proof, see Automata Theory
Main goal of the class is to build up the formal
tools needed to prove SAT is NP-Complete.



21-28: More NP-Complete Problems

Exact Cover Problem

Set of elements A

F ⊂ 2A, family of subsets

Is there a subset of F such that each element
of A appears exactly once?



21-29: More NP-Complete Problems

Exact Cover Problem

A = {a, b, c, d, e, f, g}

F = {{a, b, c}, {d, e, f}, {b, f, g}, {g}}

Exact cover exists:
{a, b, c}, {d, e, f}, {g}



21-30: More NP-Complete Problems

Exact Cover Problem

A = {a, b, c, d, e, f, g}

F = {{a, b, c}, {c, d, e, f}, {a, f, g}, {c}}

No exact cover exists



21-31: More NP-Complete Problems

Exact Cover is in NP

Guess a cover

Check that each element appears exactly once

Exact Cover is NP-Complete

Reduction from Satisfiability

Given any instance of Satisfiability, create (in
polynomial time) an instance of Exact Cover



21-32: Exact Cover is NP-Complete

Given an instance of SAT:

C1 = (x1,∨x2)

C2 = (x1 ∨ x2 ∨ x3)

C3 = (x2)

C4 = (x2, x3)

Formula: C1 ∧ C2 ∧ C3 ∧ C4

Create an instance of Exact Cover

Define a set A and family of subsets F such
that there is an exact cover of A in F if and only
if the formula is satisfiable



21-33: Exact Cover is NP-Complete

C1 = (x1 ∨ x2) C2 = (x1 ∨ x2 ∨ x3) C3 = (x2) C4 = (x2 ∨ x3)

A = {x1, x2, x3, C1, C2, C3, C4, p11, p12, p21, p22, p23, p31, p41, p42}

F = {{p11}, {p12}, {p21}, {p22}, {p23}, {p31}, {p41}, {p42},

X1, f = {x1, p11}

X1, t = {x1, p21}

X2, f = {x2, p22, p31}

X2, t = {x2, p12, p41}

X3, f = {x3, p23}

X3, t = {x3, p42}

{C1, p11}, {C1, p12}, {C2, p21}, {C2, p22}, {C2, p23}, {C3, p31},

{C4, p41}, {C4, p422}}



21-34: Directed Hamiltonian Cycle

Given any directed graph G, determine if G has a a
Hamiltonian Cycle

Cycle that includes every node in the graph
exactly once, following the direction of the
arrows



21-35: Directed Hamiltonian Cycle

Given any directed graph G, determine if G has a a
Hamiltonian Cycle

Cycle that includes every node in the graph
exactly once, following the direction of the
arrows



21-36: Directed Hamiltonian Cycle

The Directed Hamiltonian Cycle problem is
NP-Complete

Reduce Exact Cover to Directed Hamiltonian Cycle

Given any set A, and family of subsets F :

Create a graph G that has a hamiltonian cycle if
and only if there is an exact cover of A in F



21-37: Directed Hamiltonian Cycle

Widgets:

Consider the following graph segment:

a

d

b

c

u v w

If a graph containing this subgraph has a
Hamiltonian cycle, then the cycle must contain
either a→ u→ v → w → b or
c→ w → v → u→ d – but not both (why)?



21-38: Directed Hamiltonian Cycle

Widgets:

XOR edges: Exactly one of the edges must be
used in a Hamiltonian Cycle

a

d

b

c



21-39: Directed Hamiltonian Cycle

Widgets:

XOR edges: Exactly one of the edges must be
used in a Hamiltonian Cycle
a

d

b

c f e

a b

f cde



21-40: Directed Hamiltonian Cycle

Add a vertex for every variable in A (+ 1 extra)

F = {a ,a }
F = {a }
F = {a ,a }    
  

1

2

3

1

3

2 3

1a

0a

2a

3a
2



21-41: Directed Hamiltonian Cycle

Add a vertex for every subset F (+ 1 extra)

F = {a ,a }
F = {a }
F = {a ,a }    
  

1

2

3

1

3

2 3

2F  

1F  

3F  

0F  

1a

0a

2a

3a
2



21-42: Directed Hamiltonian Cycle

Add an edge from the last variable to the 0th
subset, and from the last subset to the 0th variable

F = {a ,a }
F = {a }
F = {a ,a }    
  

1

2

3

1

3

2 3

2F  

1F  

3F  

0F  

1a

0a

2a

3a
2



21-43: Directed Hamiltonian Cycle

Add 2 edges from Fi to Fi+1. One edge will be a
“short edge”, and one will be a “long edge”.

F = {a ,a }
F = {a }
F = {a ,a }    
  

1

2

3

1

3

2 3

2F  

1F  

3F  

0F  

1a

0a

2a

3a
2



21-44: Directed Hamiltonian Cycle

Add an edge from ai−1 to ai for each subset ai
appears in.

F = {a ,a }
F = {a }
F = {a ,a }    
  

1

2

3

1

3

2 3

2F  

1F  

3F  

0F  

1a

0a

2a

3a
2



21-45: Directed Hamiltonian Cycle

Each edge (ai−1, ai) corresponds to some subset
that contains ai. Add an XOR link between this
edge and the long edge of the corresponding
subset



21-46: Directed Hamiltonian Cycle

F = {a ,a }
F = {a ,a }
F = {a ,a }    
F = {a }  

1

2

3

4

2

2

1

2

4

3

2F  

1F  

3F  

4F  

0F  

2a  

1a  

3a  

4a  

0a  

4

XOR edge
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21-47: NP-Complete Problems

What if you need to solve an NP-Complete
problem?



21-48: NP-Complete Problems

What if you need to solve an NP-Complete
problem?

If the problem is small, exponential solution is
OK

Special case of an NP-Complete problem, that
can be solved quickly (3-SAT vs. 2-SAT)

Approximate solution



21-49: Approximation Ratio

An algorithm has an approximation ratio of ρ(b) if,
for any input size n, the cost of the solution
produced by the algorithm is within a factor of ρ(n)
of an optimal solution

max

(

C

C∗
,
C∗

C

)

≤ ρ(n)

For a maximization problem, 0 < C ≤ C∗

For a minimizaion problem, 0 < C∗ ≤ C



21-50: Approximation Ratio

Some problems have a polynomial solution, with
ρ(n) = c for a small constant c.

For other problems, best-known polynomial
solutions have an approximation ration that is a
function of n

Bigger problems⇒ worse approximation ratios



21-51: Approximation Scheme

Some approximation algorithm takes as input both
the problem, and a value ǫ > 0

For any fixed ǫ, (1 + ǫ)-approximation algorithm

ρ(n) = 1 + ǫ

Running time increases as ǫ decreases



21-52: Vertex Cover

Problem: Given an undirected graph G = (V,E),
find a V ′ ⊆ V such that

For each edge (u, v) E, u ∈ V ′ or v ∈ V ′

|V ′| is as small as possible

Vertex Cover is NP-Complete, optimal solutions
will require exponential time

Can you come up with an algorithm that will give a
(possiblly non-optimal) solution for the problem?



21-53: Vertex Cover

Approx-Vertex-Cover(V,E)
C ← {}
E ′ ← E
while E ′ 6= {}

let (u, v) be any edge in E ′

C ← C ∪ {u, v}
remove all edges from E ′ that contain
u or v



21-54: Vertex Cover

a c

b d

e

f

g

h



21-55: Vertex Cover

a c

b d

e

f

g

h

C =  {a, c}



21-56: Vertex Cover

a c

b d

e

f

g

h

C =  {a, c, d, e}



21-57: Vertex Cover

a c

b d

e

f

g

h

C =  {a, c, d, e, f, h}



21-58: Vertex Cover

a c

b d

e

f

g

h

C =  {a, c, d, e, f, h}



21-59: Vertex Cover

a c

b d

e

f

g

h

C =  {a, c, d, e, f, h}



21-60: Vertex Cover

a c

b d

e

f

g

h

C =  {a, d, e, h}

Optimal



21-61: Vertex Cover

Approx. Vertex-Cover is a polynomial-time
2-approximation algorithm

ρ(n) = 2

Let C be the set of vertices found by approx.
algorithm

Let C∗ be the optimal set of vertices

|C| ≤ 2 ∗ |C∗|



21-62: Vertex Cover

Let A be the set of edges selected by Approx.
Vertex Cover

Optimal vertex cover must pick at least one of the
vertices for each edge in A

|C∗| ≥ |A|

Approx. vertex cover picked both vertices for each
edge in A:

|C| = 2 ∗ |A|

Putting pieces together: |C∗| ≥ |A| = |C|/2,

|C| ≤ 2 ∗ |C∗|



21-63: TSP

Travelling Salesman problem

Complete, undirected graph G = (V,E)

Cost for each edge

Find a cycle that includes vertices, that
minimizes total cost



21-64: TSP w/ triangle inequality

TSP on plane

Each node has an x,y location

Cost bewteen nodes is the distance between
nodes

Slighly more general: TSP with triangle
inequality

For any three vertices v1, v2, v3 ∈ V ,
c(v1, v2) + c(v2, v3) ≥ c(v1, v3)



21-65: Approximate TSP

Approx-TSP(V,E, c)
select any vertex r ∈ V as root vertex
Compute MST T of graph from root r using Prim
L← list of vertices visited in preorder tree

walk of T
return L



21-66: Approximate TSP

a b

e

f

c

g

d

Edges between all pairs of vertices
cost = distance between vertices



21-67: Approximate TSP

a b

e

f

c

g

d

Start with vertex a
create MST



21-68: Approximate TSP

a b

e

f

c

g

d

Preoder Traversal of MST
a,e,g,f,b,d,c



21-69: Approximate TSP

a b

e

f

c

g

d

Traversal => Tour
a,e,g,f,b,d,c



21-70: Approximate TSP

a b

e

f

c

g

d

Best TSP tour
a,e,g,f,d,c,b



21-71: Approximate TSP

Approximate-TSP finds a tour whose cost is at
most twice the cost of the optimal TSP

ρ(n) ≤ 2

Why?



21-72: Approximate TSP

Cost of TSP Tour ≥ cost of MST

Consider a “full walk” of MST (revisit vertices)



21-73: Approximate TSP

a b

e

f

c

g

d

"full walk" of MST
a,e,g,e,f,e,a,b,d,b,c,b,a



21-74: Approximate TSP

Cost of “full walk” = 2 * cost MST

Since we are following each edge twice

Not a valid tour

Repeated vertices

Remove repeated vertices, get preorder walk

Cost of preorder walk ≤ cost of full walk –
triangle inequality



21-75: Approximate TSP

Cost of approximate TSP tour ≤ cost of full walk

Cost of full walk ≤ 2 * cost of MST

Cost of MST ≤ cost of optimal TSP tour

Cost of approximate TSP tour ≤ 2 * cost of optimal tour



21-76: General TSP

Alas, our algorithm does not generalize to all TSP

Relied on the triangle inequality

No good approximate tours can be found in
polynomial time for TSP, unless NP = P

See text for proof



21-77: Randomized Approximation

Randomized algorithms can be used to calculate
approximate solutions

Unsurprising, we’ve used randomized
algorithms to calculate exact values –
Randomized Quicksort

Randomized Approximation Algorithms are a little
different

Random values that are picked affect the
outcome

Instead of an approximation ratio, we have an
expected approximation ratio



21-78: Randomized MAX-3-SAT

MAX-3-SAT

Satisfiability Problem,

Each clause contains exactly 3 variables

No variable is repeated in the same clause

Trying to maximize the number of satisfied
clauses



21-79: Randomized MAX-3-SAT

Algorithm is extremely simple:

For each variable xi:
Set xi =True with Probability 0.5

What is an upper limit to the expected
approximation ratio?



21-80: Randomized MAX-3-SAT

Yi = I{clause i is satisfied}

So Yi =true if at least one of the literals in the
ith clause is set to 1

Setting of 3 literals in each clause is
independent

Pr{clause i is not satisfied} =



21-81: Randomized MAX-3-SAT

Yi = I{clause i is satisfied}

So Yi =true if at least one of the literals in the
ith clause is set to 1

Setting of 3 literals in each clause is
independent

Pr{clause i is not satisfied} = (1/2)3 = 1/8

Pr{clause i is satisfied} = 1− (1/2)3 = 7/8



21-82: Randomized MAX-3-SAT

Yi = I{clause i is satisfied}

Y =number of satisfied clauses =
∑m

i=1 Yi

Assuming m clauses

E[Y ] = E[
m
∑

i=1

]

=
m
∑

i=1

E[Yi]

=
m
∑

i=1

7/8

= 7m/8



21-83: Randomized MAX-3-SAT

Finding the expected approximation ratio:

Largest possible number of satisfied clauses =
m.

Expected number of satisfied clauses = 7m/8

Maximum expected approximation ratio:
m/(7m/8) = 8/7

Pick values randomly, expected approximation ratio
is at most 8/7



21-84: Subset-Sum Problem

Subset-Sum Decision Problem

Given:

A set S = {x1, x2, x3, . . . xn} of positive integers

A target t

Is there a subset of S that sums exactly to t?



21-85: Subset-Sum Problem

Subset-Sum Optimization Problem

Given:

A set S = {x1, x2, x3, . . . xn} of positive integers

A target t

Find a subset of S with the largest possible sum
less than or equal to t



21-86: Subset-Sum Problem

Exact-Subset-Sum(S, t)
n← |S|
L← {0}
for i← 1 to n
L← MergeLists(L,L + S[i])
Remove all elements larger than t from L

return largest element in L

L+ S[i] means add S[i] to each element in L

MergeLists: Merge two sorted lists, removing
duplicates



21-87: Subset-Sum Problem

S = {1, 3, 5}

L = {0}

L = {0, 1}

L = {0, 1, 3, 4}

L = {0, 1, 3, 4, 5, 6, 8, 9}



21-88: Subset-Sum Problem

S = {1, 2, 3}

L = {0}

L = {0, 1}

L = {0, 1, 2, 3}

L = {0, 1, 2, 3, 4, 5, 6}



21-89: Subset-Sum Problem

What is the worst-case running time?



21-90: Subset-Sum Problem

What is the worst-case running time?

List L could be as large as 2n

Running time is O(2n)

(Polynomial if sum of all elements in L is bound
by a polynomial in |S|)



21-91: Subset-Sum Problem

Algorithm is exponential because L can grow
exponentially large

So, if we wanted an approximation in polynomial
time, what could we do?



21-92: Subset-Sum Problem

Algorithm is exponential because L can grow
exponentially large

So, if we wanted an approximation in polynomial
time, what could we do?

Prune L to prevent it from getting too large

Removing the wrong element could prevent us
from finding an optimal solution

How can we prune L to minimize / bound the
error?



21-93: Subset-Sum Problem

Basic idea:

After creating the list L, “trim” it by removing
elements

If we have two elements that are close to each
other, we remove the larger of them

Sum can be off by the difference of the
elements



21-94: Subset-Sum Problem

Function TRIM, takes as input a list and a δ, and
trims all elements that are within δ % of the
previous element in the list:

TRIM(L, δ)
m← |L|
L′ ← L[1]
last← L[1]
for i← 2 to m

if L[i] >last ∗(1 + δ)
append L[i] to L′

last← L[i]
return L′



21-95: Subset-Sum Problem

Approx-Subset-Sum(S, t, ǫ)
n← |L|
L← {0}
for i← 1 to n
L← MergeLists(L,L + S[i])
L← TRIM(L, ǫ/2n)
remove elements greater than t from L

return largest element in L

Returns an element within (1 + ǫ) of optimal



21-96: Subset-Sum Problem

S = {104, 102, 201, 101}, t = 308, ǫ = .4, δ = 0.05

L = {0}

L = {0, 104}

(no trimming)

L = {0, 102, 104, 206}

104 < 102 ∗ 1.05

L = {0, 102, 206}

L = {0, 102, 201, 206, 303, 407}

206 < 201 ∗ 1.05

407 > t

L = {0, 102, 201, 303}



21-97: Subset-Sum Problem

S = {104, 102, 201, 101}, t = 308ǫ = .4, δ = 0.05

L = {0, 102, 201, 303}

L = {0, 101, 102, 201, 203, 302, 303, 404}

102 < 101 ∗ 1.05

203 < 201 ∗ 1.05

303 < 302 ∗ 1.05

404 > ǫ

L = {0, 101, 201, 302}

Result: 302

Optimal: 307 (104 + 102 + 101)

Within 0.40 of optimal



21-98: Subset-Sum Problem

Approx-Subset-Sum(S, t, ǫ)

Always returns a result within (1 + ǫ) of the true
optimal

Runs in time polynomial in length of input and

1/ǫ



21-99: Subset-Sum Problem

Runs in time polynomial in length of input and 1/ǫ:

First, we’ll find a bound on how long each list Li

can be

After each trimming, consider successive
elements z, z′

z′/z > 1 + ǫ/2n

Largest that Li could be:

0, 1, ǫ/2n, 2ǫ/2n, 3ǫ/2n . . .

size of Li < log1+ǫ/2n t+ 2



21-100: Subset-Sum Problem

size of Li < log1+ǫ/2n t

log1+ǫ/2n t =
ln t

ln(1 + ǫ/2n)
+ 2

≤
2n(1 + ǫ/2n) ln t

ǫ
+ 2

≤
4n ln t

ǫ
+ 2

Bound is clearly polynnomial in size of input and 1
ǫ

x
1+x
≤ ln(1 + x) ≤ x, 0 < ǫ < 1



21-101: Subset-Sum Problem

Always returns a result within (1 + ǫ) of the true
optimal

See text, pg. 1048
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