
Graduate Algorithms
CS673-2016F-03

Heaps

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


03-0: Heap Definition

Complete Binary Tree

Heap Property

Max Heap:
For every subtree in a tree, each value in the
subtree is <= value stored at the root of the
subtree

Min Heap:
For every subtree in a tree, each value in the
subtree is >= value stored at the root of the
subtree



03-1: Heap Examples

20

8 15

7 6 4 14

5 2 1 3
Valid Heap



03-2: Heap Examples

20

8 15

7 9 4 14

5 2 1 3
Invalid Heap



03-3: Heap Insert

There is only one place we can insert an element
into a heap, so that the heap remains a complete
binary tree

Inserting an element at the “end” of the heap might
break the heap property



03-4: Heap Insert

There is only one place we can insert an element
into a heap, so that the heap remains a complete
binary tree

Inserting an element at the “end” of the heap might
break the heap property

Swap the inserted value up the tree



03-5: Heap Remove Largest

Removing the Root of the heap is hard

Removing the element at the “end” of the heap is
easy



03-6: Heap Remove Largest

Removing the Root of the heap is hard

Removing the element at the “end” of the heap is
easy

Move last element into root
May break the heap property



03-7: Heap Remove Largest

Removing the Root of the heap is hard

Removing the element at the “end” of the heap is
easy

Move last element into root
Shift the root down, until heap property is
satisfied



03-8: Representing Heaps

Represent heaps using pointers

Need to add parent pointers for insert to work
correctly

Space needed to store pointers – 3 per node –
could be greater than the space need to store
the data in the heap!

Memory allocation and deallocation is slow

There is a better way!



03-9: Representing Heaps

A Complete Binary Tree can be stored in an array:

20

8 15

7 6 4 14

5 2 1 3

20 8 15 7 6 4 14 5 2 1 3
0 1 2 3 4 5 6 7 8 9 10 11 12 13



03-10: CBTs as Arrays

The root is stored at index 0

For the node stored at index i:

Left child is stored at index 2 ∗ i+ 1

Right child is stored at index 2 ∗ i+ 2

Parent is stored at index ⌊(i− 1)/2⌋



03-11: CBTs as Arrays

Finding the parent of a node

int parent(int n) {
return (n - 1) / 2;

}

Finding the left child of a node

int leftchild(int n) {
return 2 * n + 1;

}

Finding the right child of a node

int rightchild(int n) {
return 2 * n + 1;

}



03-12: Building a Heap

Build a heap out of n elements



03-13: Building a Heap

Build a heap out of n elements

Start with an empty heap

Do n insertions into the heap

MaxHeap H = new MaxHeap();
for(i=0 < i<A.size(); i++)

H.insert(A[i]);

Running time?



03-14: Building a Heap

Build a heap out of n elements

Start with an empty heap

Do n insertions into the heap

MaxHeap H = new MaxHeap();
for(i=0 < i<A.size(); i++)

H.insert(A[i]);

Running time? O(n lg n) – is this bound tight?



03-15: Building a Heap

Total time: c1 +
∑n

i=1
c2 lg i



03-16: Building a Heap

Total time: c1 +
∑n

i=1
c2 lg i

c1 +
n∑

i=1

c2 lg i ≥
n∑

i=n/2

c2 lg i

≥
n∑

i=n/2

c2 lg(n/2)

= (n/2)c2 lg(n/2)

= (n/2)c2((lg n)− 1)

∈ Ω(n lg n)

Running Time: Θ(n lg n)



03-17: Building a Heap

Build a heap from the bottom up

Place elements into a heap array

Each leaf is a legal heap

First potential problem is at location ⌊i/2⌋



03-18: Building a Heap

Build a heap from the bottom up

Place elements into a heap array

Each leaf is a legal heap

First potential problem is at location ⌊i/2⌋

for(i=n/2; i>=0; i--)
siftdown(i);



03-19: Building a Heap

How many swaps, worst case? If every siftdown has
to swap all the way to a leaf:

n/4 elements 1 swap

n/8 elements 2 swaps

n/16 elements 3 swaps

n/32 elements 4 swaps

. . .
Total # of swaps:

n/4 + 2n/8 + 3n/16 + 4n/32 + . . . + (lg n)n/n



03-20: Heapsort

How can we use a heap to sort a list?



03-21: Heapsort

How can we use a heap to sort a list?

Build a max-heap out of the array we want to
sort (Time Θ(n))

While the heap is not empty:
Remove the largest element
Place this element in the “empty space” just
cleared by the deletion

Total time:



03-22: Heapsort

How can we use a heap to sort a list?

Build a max-heap out of the array we want to
sort (Time Θ(n))

While the heap is not empty:
Remove the largest element
Place this element in the “empty space” just
cleared by the deletion

Total time: Θ(n lg n)


	{small lecturenumber -	heblocknumber :} Heap Definitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Largestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Largestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Largestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} CBTs as Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} CBTs as Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heapsortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heapsortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heapsortaddtocounter {blocknumber}{1}

