
Graduate Algorithms
CS673-2016F-04

Sorting I

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

04-0: Divide & Conquer

Divide a problem into 2 or more smaller
subproblems

Recursively solve each subproblem

Combine the solutions of the subproblems

04-1: Divide & Conquer

Mergesort:

Divide the list in half

Recursively sort each half of the list

Merge the sorted lists together

Dividing the list is easy (no real work required)

Combining solutions harder

04-2: Divide & Conquer

Quicksort:

Pick a pivot element

Divide the list into elements < pivot, elements
> pivot

Recursively sort each of these two segments

No work required after recursive step

Dividing the list is harder

Combining solutions is easy (no real work
required)

04-3: Quicksort

Quicksort(A, low, high)
if (low < high) then

pivotindex← Partition(A, low, high)
Quicksort(A, low, pivotindex − 1)
Quicksort(A, pivotindex + 1, high)

04-4: Quicksort

How can we efficiently partition the list?

04-5: Quicksort

How can we efficiently partition the list?

Method 1:

Maintain two indices, i and j

Everything to left of i ≤ pivot

Everything to right if j ≥ pivot

Start i at beginning of the list, j at the end of
the list, move them in maintaining the
conditions above

04-6: Quicksort

How can we efficiently partition the list?

Method 2:

Maintain two indices, i and j

Everything to left of i ≤ pivot

Everything between i and j ≥ pivot

Start both i and j at beginning of the list,
increase them while maintaining the conditions
above

04-7: Partition

Partition(A, low, high)
pivot = A[high]
i← low - 1
for j← low to high - 1 do

if (A[j] ≤ pivot then
i← i + 1
swap A[i]↔ A[j]

swap A[i+1]↔ A[high]

04-8: Partition

Partition example:

5 7 1 3 6 2 8 4

04-9: Quicksort

Running time for Quicksort: Intuition

Worst case: list is split into size 0, size (n-1)

T (n) = T (n− 1) + T (0) + Θ(n)

= T (n− 1) + Θ(n)

Recursion Tree

04-10: Quicksort

cn

c(n-1)a

c(n-2)a

c(n-3)a

cn

a+c(n-1)

a+c(n-2)

a+c(n-3

...

...

n

(n-1)a + Σ ci
i=1

n

04-11: Quicksort

Confirm O(n2) with substitution method:

T (n) = T (n− 1) + c ∗ n

04-12: Quicksort

Confirm O(n2) with substitution method:

T (n) = T (n− 1) + c ∗ n

≤ c1 ∗ (n− 1)2 + c ∗ n

≤ c1 ∗ (n
2 − 2n+ 1) + c ∗ n

≤ c1 ∗ n
2 + (c− 2 ∗ c1 + 1/n) ∗ n

≤ c1 ∗ n
2

(if c1 > (c+ 1/n)/2)

04-13: Quicksort

Confirm Ω(n2) with substitution method:

T (n) = T (n− 1) + c ∗ n

≥ c1 ∗ (n− 1)2 + c ∗ n

≥ c1 ∗ (n
2 − 2n+ 1) + c ∗ n

≥ c1 ∗ (n
2 − 2n) + c ∗ n

≥ c1 ∗ n
2 + (c− 2 ∗ c1) ∗ n

≥ c1 ∗ n
2

(if c1 > c/2)

04-14: Quicksort

Running time for Quicksort: Intuition

Best case: list is split in half

T (n) = 2T
(n

2

)

+ c ∗ n

∈ Θ(n lg n)

(Using the master theorem)

04-15: Quicksort

Running time for Quicksort: Intuition

Average case:

What if we split the problem into size (1/9)n
and (8/9)n
What if we split the problem into size
(1/100)n and (99/100)n

(Show recursion trees)

04-16: Quicksort

Worst Case:

T (n) = max
0≤q≤n−1

T (q) + T (n− q − 1) + Θ(n)

04-17: Quicksort

Worst Case:

T (n) = max
0≤q≤n−1

T (q) + T (n− q − 1) + Θ(n)

Guess T (n) ∈ O(n2)

T (n) ≤ max
0≤q≤n−1

c1q
2 + c1(n− q − 1)2 + c2 ∗ n

≤ c1 ∗ max
0≤q≤n−1

(q2 + (n− q − 1)2)c1 + c2 ∗ n

Maximizing q2 + (n− q − 1)2 over range 0 ≤ q ≤ n− 1

04-18: Quicksort

Maximizing q2 + (n− q − 1)2 over range 0 ≤ q ≤ n− 1

2nd derivative with respect to q is positive

Maximim value needs to occur at the endpoints:
q = 0 or q = n− 1

04-19: Quicksort

T (n) ≤ max
0≤q≤n−1

c1q
2 + c1(n− q − 1)2 + c2 ∗ n

≤ c1 ∗ max
0≤q≤n−1

(q2 + (n− q − 1)2)c1 + c2 ∗ n

≤ c1(n− 1)2 + c2 ∗ n

≤ c1n
2 − 2c1n+ c1 + c2 ∗ n

≤ c1n
2

(if c1 > c2/2)

04-20: Quicksort

Average case:

What is the average case?

We can assume that all permutations of the list
are equally likely (is this a good assumption?)

What else can we do?

04-21: Partition

Partition(A, low, high)
pivot = A[high]
i← low - 1
for j← low to high - 1 do

if (A[j] ≤ pivot) then
i← i + 1
swap A[i]↔ A[j]

swap A[i+1]↔ A[hight]

04-22: Randomized Partition

Partition(A, low, high)
swap A[high]↔ A[random(low,high)]
pivot = A[high]
i← low - 1
for j← low to high - 1 do

if (A[j] ≤ pivot) then
i← i + 1
swap A[i]↔ A[j]

swap A[i+1]↔ A[hight]

04-23: Quicksort Analysis

OK, we can assume that all permutations are
equally likely (especially if we randomize partition)

How long does quicksort take in the average case?

04-24: Quicksort Analysis

Time for quicksort dominated by time spent in
partition procedure

Partition can be called a maximum of n times
(why)?

Time for each call to partition is Θ(1) + # of times
through for loop

Total number of times the test (A[j] ≤ pivot) is done
is proportional to the time spent for the loop

Therefore, the total # of times the test (A[j] ≤ pivot)
is a bound on the time for the entire algorithm

04-25: Quicksort Analysis

Some definitions:

Define zi to be the ith smallest element in the list

Define Zij to be the set of elements zi, zi+1, . . . zj

So, if our array A = {3, 4, 1, 9, 10, 7} then:

z1 = 1, z2 = 3, z3 = 4, etc

Z35 = {4, 7, 9}

Z46 = {7, 9, 10}

04-26: Quicksort Analysis

Each pair of elements can be compared at most
once (why)?

Define an indicator variable Xij = I{zi is compared
to zj}

X =
n−1∑

i=1

n∑

j=i+1

Xij

E[X] = E[
n−1∑

i=1

n∑

j=i+1

Xij]

E[X] =
n−1∑

i=1

n∑

j=i+1

E[Xij]

n−1∑ n∑

{ }

04-27: Quicksort Analysis

Calculating E[Xij]:

When will element zi be compared to zj?

A = {1, 2, 3, 4, 5, 6, 7, 8, 9 , 10}

If pivot = 6

6 will be compared to every other element

1-5 will never be compared to anything in 7-10

04-28: Quicksort Analysis

Calculating E[Xij]:

Given any two elements zi, zj, if we pick some
element x as a pivot such that zi < x < zj, then
zi and zj will never be compared to each other

zi and zj will be compared with each other

when the first element chosen Zij is either zi or
zj

04-29: Quicksort Analysis

Pr{zi is compared to zj } = Pr{zi or zj is first pivot selected from Zij

= Pr{zi is first from Zij } + Pr{zj is first from Zij }

= 1/(j − i+ 1) + 1/(j − i+ 1)

= 2/(j − i+ 1)

04-30: Quicksort Analysis

E[X] =
n−1∑

i=1

n∑

j=i+1

E[Xij]

=
n−1∑

i=1

n∑

j=i+1

2

j − i+ 1

=
n−1∑

i=1

n−i∑

k=1

2

k + 1

<

n−1∑

i=1

n−i∑

k=1

2

k

<
n−1∑

i=1

2 ln(n− i) + 1

04-31: Quicksort Analysis

E[X] <
n−1∑

i=1

2 ln(n− i) + 1

<
n−1∑

i=1

2 ln(n) + 1

< 2 ∗ n ln(n) + 1

∈ O(n lg n)

04-32: Alternate Parition strategy

Partition(A, low, high)
pivot = A[high]
i = low
j = high - 1
while (i < j)

while (A[i] < pivot)
i++

while (A[j] > pivot)
j - -

if (i < j)
swap A[i]↔ A[j]
i++
j - -

swap A[i]↔ A[high]

04-33: Alternate Parition strategy

Partition(A, low, high)

pivot = A[high]

i = low

j = high - 1

while (i < j)

while (A[i] ≤ pivot)

i++

while (A[j] ≥ pivot)

j - -

if (i < j)

swap A[i] ↔ A[j]

i++

j - -

swap A[i] ↔ A[high]

What happens if we change < to ≤?

04-34: Comparison Sorting

Comparison sorts work by comparing elements

Can only compare 2 elements at a time

Check for <, >, =.

All the sorts we have seen so far (Insertion, Quick,
Merge, Heap, etc.) are comparison sorts

If we know nothing about the list to be sorted, we
need to use a comparison sort

04-35: Decision Trees

Insertion Sort on list {a, b, c}
a<b<c b<c<a
a<c<b c<a<b
b<a<c c<b<a

a<b<c
a<c<b
c<a<b

b<a<c
b<c<a
c<b<a

a<b<c a<c<b
c<a<b

a<c<b c<a<b

b<a<c b<c<a
c<b<a

b<c<a c<b<a

a<b b<a

b<c c<b a<c c<a

a<c c<a b<c c<b

04-36: Decision Trees

Every comparison sorting algorithm has a decision
tree

What is the best-case number of comparisons for a
comparison sorting algorithm, given the decision
tree for the algorithm?

04-37: Decision Trees

Every comparison sorting algorithm has a decision
tree

What is the best-case number of comparisons for a
comparison sorting algorithm, given the decision
tree for the algorithm?

(The depth of the shallowest leaf) + 1

What is the worst case number of comparisons for
a comparison sorting algorithm, given the decision
tree for the algorithm?

04-38: Decision Trees

Every comparison sorting algorithm has a decision
tree

What is the best-case number of comparisons for a
comparison sorting algorithm, given the decision
tree for the algorithm?

(The depth of the shallowest leaf) + 1

What is the worst case number of comparisons for
a comparison sorting algorithm, given the decision
tree for the algorithm?

The height of the tree – (depth of the deepest
leaf) + 1

04-39: Decision Trees

What is the largest number of nodes for a tree of
depth d?

04-40: Decision Trees

What is the largest number of nodes for a tree of
depth d?

2d

What is the minimum height, for a tree that has n
leaves?

04-41: Decision Trees

What is the largest number of nodes for a tree of
depth d?

2d

What is the minimum height, for a tree that has n
leaves?

lg n

How many leaves are there in a decision tree for
sorting n elements?

04-42: Decision Trees

What is the largest number of nodes for a tree of
depth d?

2d

What is the minimum height, for a tree that has n
leaves?

lg n

How many leaves are there in a decision tree for
sorting n elements?

n!

What is the minimum height, for a decision tree for
sorting n elements?

04-43: Decision Trees

What is the largest number of nodes for a tree of
depth d?

2d

What is the minimum height, for a tree that has n
leaves?

lg n

How many leaves are there in a decision tree for
sorting n elements?

n!

What is the minimum height, for a decision tree for
sorting n elements?

lg n!

04-44: lg(n!) ∈ Ω(n lg n)

lg(n!) = lg(n ∗ (n− 1) ∗ (n− 2) ∗ . . . ∗ 2 ∗ 1)

= (lg n) + (lg(n− 1)) + (lg(n− 2)) + . . .

+(lg 2) + (lg 1)

≥ (lg n) + (lg(n− 1)) + . . . + (lg(n/2))
︸ ︷︷ ︸

n/2 terms

≥ (lg n/2) + (lg(n/2)) + . . . + lg(n/2)
︸ ︷︷ ︸

n/2 terms

= (n/2) lg(n/2)

∈ Ω(n lg n)

04-45: Sorting Lower Bound

All comparison sorting algorithms can be
represented by a decision tree with n! leaves

Worst-case number of comparisons required by a
sorting algorithm represented by a decision tree is
the height of the tree

A decision tree with n! leaves must have a height
of at least n lg n

All comparison sorting algorithms have worst-case

running time Ω(n lg n)

	{small lecturenumber -	heblocknumber :} Divide & Conquer addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Divide & Conquer addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Divide & Conquer addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Randomized Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quicksort Analysisaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alternate Parition strategyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alternate Parition strategyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Comparison Sortingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decision Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $lg (n!)
in Omega (n lg n)$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sorting Lower Boundaddtocounter {blocknumber}{1}

