
CS673-2016F-04 Sorting I 1

04-0: Divide & Conquer

• Divide a problem into 2 or more smaller subproblems

• Recursively solve each subproblem

• Combine the solutions of the subproblems

04-1: Divide & Conquer

• Mergesort:

• Divide the list in half

• Recursively sort each half of the list

• Merge the sorted lists together

• Dividing the list is easy (no real work required)

• Combining solutions harder

04-2: Divide & Conquer

• Quicksort:

• Pick a pivot element

• Divide the list into elements < pivot, elements > pivot

• Recursively sort each of these two segments

• No work required after recursive step

• Dividing the list is harder

• Combining solutions is easy (no real work required)

04-3: Quicksort

Quicksort(A, low, high)

if (low < high) then

pivotindex← Partition(A, low, high)

Quicksort(A, low, pivotindex − 1)

Quicksort(A, pivotindex + 1, high)

04-4: Quicksort

• How can we efficiently partition the list?

04-5: Quicksort

• How can we efficiently partition the list?

• Method 1:

• Maintain two indices, i and j

• Everything to left of i ≤ pivot

CS673-2016F-04 Sorting I 2

• Everything to right if j ≥ pivot

• Start i at beginning of the list, j at the end of the list, move them in maintaining the conditions above

04-6: Quicksort

• How can we efficiently partition the list?

• Method 2:

• Maintain two indices, i and j

• Everything to left of i ≤ pivot

• Everything between i and j ≥ pivot

• Start both i and j at beginning of the list, increase them while maintaining the conditions above

04-7: Partition

Partition(A, low, high)

pivot = A[high]

i← low - 1

for j← low to high - 1 do

if (A[j] ≤ pivot then

i← i + 1

swap A[i]↔ A[j]

swap A[i+1]↔ A[high]

04-8: Partition

Partition example:

5 7 1 3 6 2 8 4

04-9: Quicksort

• Running time for Quicksort: Intuition

• Worst case: list is split into size 0, size (n-1)

T (n) = T (n− 1) + T (0) + Θ(n)

= T (n− 1) + Θ(n)

Recursion Tree

04-10: Quicksort

CS673-2016F-04 Sorting I 3

cn

c(n-1)a

c(n-2)a

c(n-3)a

cn

a+c(n-1)

a+c(n-2)

a+c(n-3

...

...

n

(n-1)a + Σ ci
i=1

n

04-11: Quicksort

Confirm O(n2) with substitution method:

T (n) = T (n− 1) + c ∗ n

04-12: Quicksort

Confirm O(n2) with substitution method:

T (n) = T (n− 1) + c ∗ n

≤ c1 ∗ (n− 1)2 + c ∗ n

≤ c1 ∗ (n
2 − 2n+ 1) + c ∗ n

≤ c1 ∗ n
2 + (c− 2 ∗ c1 + 1/n) ∗ n

≤ c1 ∗ n
2

(if c1 > (c+ 1/n)/2)

04-13: Quicksort

Confirm Ω(n2) with substitution method:

T (n) = T (n− 1) + c ∗ n

≥ c1 ∗ (n− 1)2 + c ∗ n

≥ c1 ∗ (n
2 − 2n+ 1) + c ∗ n

≥ c1 ∗ (n
2 − 2n) + c ∗ n

≥ c1 ∗ n
2 + (c− 2 ∗ c1) ∗ n

≥ c1 ∗ n
2

CS673-2016F-04 Sorting I 4

(if c1 > c/2)

04-14: Quicksort

• Running time for Quicksort: Intuition

• Best case: list is split in half

T (n) = 2T
(n

2

)

+ c ∗ n

∈ Θ(n lgn)

(Using the master theorem) 04-15: Quicksort

• Running time for Quicksort: Intuition

• Average case:

• What if we split the problem into size (1/9)n and (8/9)n

• What if we split the problem into size (1/100)n and (99/100)n

(Show recursion trees) 04-16: Quicksort

• Worst Case:

T (n) = max
0≤q≤n−1

T (q) + T (n− q − 1) + Θ(n)

04-17: Quicksort

• Worst Case:

T (n) = max
0≤q≤n−1

T (q) + T (n− q − 1) + Θ(n)

Guess T (n) ∈ O(n2)

T (n) ≤ max
0≤q≤n−1

c1q
2 + c1(n− q − 1)2 + c2 ∗ n

≤ c1 ∗ max
0≤q≤n−1

(q2 + (n− q − 1)2)c1 + c2 ∗ n

Maximizing q2 + (n− q − 1)2 over range 0 ≤ q ≤ n− 1
04-18: Quicksort

Maximizing q2 + (n− q − 1)2 over range 0 ≤ q ≤ n− 1

• 2nd derivative with respect to q is positive

• Maximim value needs to occur at the endpoints: q = 0 or q = n− 1

CS673-2016F-04 Sorting I 5

04-19: Quicksort

T (n) ≤ max
0≤q≤n−1

c1q
2 + c1(n− q − 1)2 + c2 ∗ n

≤ c1 ∗ max
0≤q≤n−1

(q2 + (n− q − 1)2)c1 + c2 ∗ n

≤ c1(n− 1)2 + c2 ∗ n

≤ c1n
2 − 2c1n+ c1 + c2 ∗ n

≤ c1n
2

(if c1 > c2/2)

04-20: Quicksort

• Average case:

• What is the average case?

• We can assume that all permutations of the list are equally likely (is this a good assumption?)

• What else can we do?

04-21: Partition

Partition(A, low, high)

pivot = A[high]

i← low - 1

for j← low to high - 1 do

if (A[j] ≤ pivot) then

i← i + 1

swap A[i]↔ A[j]

swap A[i+1]↔ A[hight]

04-22: Randomized Partition

Partition(A, low, high)

swap A[high]↔ A[random(low,high)]

pivot = A[high]

i← low - 1

for j← low to high - 1 do

if (A[j] ≤ pivot) then

i← i + 1

swap A[i]↔ A[j]

swap A[i+1]↔ A[hight]

04-23: Quicksort Analysis

• OK, we can assume that all permutations are equally likely (especially if we randomize partition)

• How long does quicksort take in the average case?

04-24: Quicksort Analysis

CS673-2016F-04 Sorting I 6

• Time for quicksort dominated by time spent in partition procedure

• Partition can be called a maximum of n times (why)?

• Time for each call to partition is Θ(1) + # of times through for loop

• Total number of times the test (A[j] ≤ pivot) is done is proportional to the time spent for the loop

• Therefore, the total # of times the test (A[j] ≤ pivot) is a bound on the time for the entire algorithm

04-25: Quicksort Analysis

Some definitions:

• Define zi to be the ith smallest element in the list

• Define Zij to be the set of elements zi, zi+1, . . . zj

So, if our array A = {3, 4, 1, 9, 10, 7} then:

• z1 = 1, z2 = 3, z3 = 4, etc

• Z35 = {4, 7, 9}

• Z46 = {7, 9, 10}

04-26: Quicksort Analysis

• Each pair of elements can be compared at most once (why)?

• Define an indicator variable Xij = I{zi is compared to zj}

X =

n−1∑

i=1

n∑

j=i+1

Xij

E[X] = E[

n−1∑

i=1

n∑

j=i+1

Xij]

E[X] =
n−1∑

i=1

n∑

j=i+1

E[Xij]

E[X] =

n−1∑

i=1

n∑

j=i+1

Pr{zi compared to zj}

04-27: Quicksort Analysis

• Calculating E[Xij]:

• When will element zi be compared to zj?

• A = {1, 2, 3, 4, 5, 6, 7, 8, 9 , 10}

• If pivot = 6

• 6 will be compared to every other element

• 1-5 will never be compared to anything in 7-10

CS673-2016F-04 Sorting I 7

04-28: Quicksort Analysis

• Calculating E[Xij]:

• Given any two elements zi, zj , if we pick some element x as a pivot such that zi < x < zj , then zi and zj
will never be compared to each other

• zi and zj will be compared with each other when the first element chosen Zij is either zi or zj

04-29: Quicksort Analysis
Pr{zi is compared to zj} = Pr{zi or zj is first pivot selected from Zij

= Pr{zi is first from Zij} + Pr{zj is first from Zij }

= 1/(j − i + 1) + 1/(j − i + 1)
= 2/(j − i + 1)

04-30: Quicksort Analysis

E[X] =

n−1∑

i=1

n∑

j=i+1

E[Xij]

=

n−1∑

i=1

n∑

j=i+1

2

j − i+ 1

=
n−1∑

i=1

n−i∑

k=1

2

k + 1

<

n−1∑

i=1

n−i∑

k=1

2

k

<

n−1∑

i=1

2 ln(n− i) + 1

04-31: Quicksort Analysis

E[X] <

n−1∑

i=1

2 ln(n− i) + 1

<

n−1∑

i=1

2 ln(n) + 1

< 2 ∗ n ln(n) + 1

∈ O(n lg n)

04-32: Alternate Parition strategy

Partition(A, low, high)

pivot = A[high]

i = low

j = high - 1

while (i < j)

while (A[i] < pivot)

i++

while (A[j] > pivot)

j - -

CS673-2016F-04 Sorting I 8

if (i < j)

swap A[i]↔ A[j]

i++

j - -

swap A[i]↔ A[high]

04-33: Alternate Parition strategy

Partition(A, low, high)

pivot = A[high]

i = low

j = high - 1

while (i < j)

while (A[i] ≤ pivot)

i++

while (A[j] ≥ pivot)

j - -

if (i < j)

swap A[i] ↔ A[j]

i++

j - -

swap A[i] ↔ A[high]

What happens if we change < to ≤?

04-34: Comparison Sorting

• Comparison sorts work by comparing elements

• Can only compare 2 elements at a time

• Check for <, >, =.

• All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts

• If we know nothing about the list to be sorted, we need to use a comparison sort

04-35: Decision Trees Insertion Sort on list {a, b, c}

a<b<c b<c<a
a<c<b c<a<b
b<a<c c<b<a

a<b<c
a<c<b
c<a<b

b<a<c
b<c<a
c<b<a

a<b<c a<c<b
c<a<b

a<c<b c<a<b

b<a<c b<c<a
c<b<a

b<c<a c<b<a

a<b b<a

b<c c<b a<c c<a

a<c c<a b<c c<b

04-36: Decision Trees

• Every comparison sorting algorithm has a decision tree

• What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the

algorithm?

CS673-2016F-04 Sorting I 9

04-37: Decision Trees

• Every comparison sorting algorithm has a decision tree

• What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the

algorithm?

• (The depth of the shallowest leaf) + 1

• What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for

the algorithm?

04-38: Decision Trees

• Every comparison sorting algorithm has a decision tree

• What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the

algorithm?

• (The depth of the shallowest leaf) + 1

• What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for

the algorithm?

• The height of the tree – (depth of the deepest leaf) + 1

04-39: Decision Trees

• What is the largest number of nodes for a tree of depth d?

04-40: Decision Trees

• What is the largest number of nodes for a tree of depth d?

• 2d

• What is the minimum height, for a tree that has n leaves?

04-41: Decision Trees

• What is the largest number of nodes for a tree of depth d?

• 2d

• What is the minimum height, for a tree that has n leaves?

• lg n

• How many leaves are there in a decision tree for sorting n elements?

04-42: Decision Trees

• What is the largest number of nodes for a tree of depth d?

• 2d

• What is the minimum height, for a tree that has n leaves?

• lg n

CS673-2016F-04 Sorting I 10

• How many leaves are there in a decision tree for sorting n elements?

• n!

• What is the minimum height, for a decision tree for sorting n elements?

04-43: Decision Trees

• What is the largest number of nodes for a tree of depth d?

• 2d

• What is the minimum height, for a tree that has n leaves?

• lg n

• How many leaves are there in a decision tree for sorting n elements?

• n!

• What is the minimum height, for a decision tree for sorting n elements?

• lg n!

04-44: lg(n!) ∈ Ω(n lg n)

lg(n!) = lg(n ∗ (n− 1) ∗ (n− 2) ∗ . . . ∗ 2 ∗ 1)

= (lg n) + (lg(n− 1)) + (lg(n− 2)) + . . .

+(lg 2) + (lg 1)

≥ (lg n) + (lg(n− 1)) + . . .+ (lg(n/2))
︸ ︷︷ ︸

n/2 terms

≥ (lg n/2) + (lg(n/2)) + . . .+ lg(n/2)
︸ ︷︷ ︸

n/2 terms

= (n/2) lg(n/2)

∈ Ω(n lgn)

04-45: Sorting Lower Bound

• All comparison sorting algorithms can be represented by a decision tree with n! leaves

• Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height

of the tree

• A decision tree with n! leaves must have a height of at least n lgn

• All comparison sorting algorithms have worst-case running time Ω(n lgn)

