04-0: Divide & Conquer

- Divide a problem into 2 or more smaller subproblems
- Recursively solve each subproblem
- Combine the solutions of the subproblems

04-1: Divide & Conquer

- Mergesort:
 - Divide the list in half
 - Recursively sort each half of the list
 - Merge the sorted lists together
- Dividing the list is easy (no real work required)
- Combining solutions harder

04-2: Divide & Conquer

- Quicksort:
 - Pick a pivot element
 - Divide the list into elements < pivot, elements > pivot
 - Recursively sort each of these two segments
 - No work required after recursive step
- Dividing the list is harder
- Combining solutions is easy (no real work required)

04-3: Quicksort

```
Quicksort(A, low, high)
```

```
if (low < high) then

pivotindex \leftarrow Partition(A, low, high)

Quicksort(A, low, pivotindex - 1)

Quicksort(A, pivotindex + 1, high)
```

04-4: Quicksort

• How can we efficiently partition the list?

04-5: Quicksort

- How can we efficiently partition the list?
- Method 1:
 - Maintain two indices, *i* and *j*
 - Everything to left of $i \leq pivot$

- Everything to right if $j \ge pivot$
- Start *i* at beginning of the list, *j* at the end of the list, move them in maintaining the conditions above

04-6: Quicksort

- How can we efficiently partition the list?
- Method 2:
 - Maintain two indices, *i* and *j*
 - Everything to left of $i \leq pivot$
 - Everything between i and $j \ge pivot$
 - Start both i and j at beginning of the list, increase them while maintaining the conditions above

04-7: Partition

```
Partition(A, low, high)

pivot = A[high]

i \leftarrow low - 1

for j \leftarrow low to high - 1 do

if (A[j] \leq pivot then

i \leftarrow i + 1

swap A[i] \leftrightarrow A[j]

swap A[i+1] \leftrightarrow A[high]
```

04-8: Partition

Partition example:

57136284 04-9: **Quicksort**

- Running time for Quicksort: Intuition
 - Worst case: list is split into size 0, size (n-1)

$$T(n) = T(n-1) + T(0) + \Theta(n)$$

= $T(n-1) + \Theta(n)$

Recursion Tree 04-10: **Quicksort**

04-11: Quicksort

CS673-2016F-04

Confirm $O(n^2)$ with substitution method:

$$T(n) = T(n-1) + c * n$$

04-12: Quicksort

Confirm $O(n^2)$ with substitution method:

$$T(n) = T(n-1) + c * n$$

$$\leq c_1 * (n-1)^2 + c * n$$

$$\leq c_1 * (n^2 - 2n + 1) + c * n$$

$$\leq c_1 * n^2 + (c - 2 * c_1 + 1/n) * n$$

$$\leq c_1 * n^2$$

(if $c_1 > (c + 1/n)/2$) 04-13: **Quicksort**

Confirm $\Omega(n^2)$ with substitution method:

$$T(n) = T(n-1) + c * n$$

$$\geq c_1 * (n-1)^2 + c * n$$

$$\geq c_1 * (n^2 - 2n + 1) + c * n$$

$$\geq c_1 * (n^2 - 2n) + c * n$$

$$\geq c_1 * n^2 + (c - 2 * c_1) * n$$

$$\geq c_1 * n^2$$

(if $c_1 > c/2$) 04-14: **Quicksort**

- Running time for Quicksort: Intuition
 - Best case: list is split in half

$$T(n) = 2T\left(\frac{n}{2}\right) + c * n$$

$$\in \Theta(n \lg n)$$

(Using the master theorem) 04-15: Quicksort

- Running time for Quicksort: Intuition
 - Average case:
 - What if we split the problem into size (1/9)n and (8/9)n
 - What if we split the problem into size (1/100)n and (99/100)n

(Show recursion trees) 04-16: Quicksort

• Worst Case:

$$T(n) = \max_{0 \le q \le n-1} T(q) + T(n-q-1) + \Theta(n)$$

04-17: Quicksort

• Worst Case:

$$T(n) = \max_{0 \le q \le n-1} T(q) + T(n-q-1) + \Theta(n)$$

Guess $T(n) \in O(n^2)$

$$T(n) \leq \max_{0 \leq q \leq n-1} c_1 q^2 + c_1 (n-q-1)^2 + c_2 * n$$

$$\leq c_1 * \max_{0 < q < n-1} (q^2 + (n-q-1)^2) c_1 + c_2 * n$$

Maximizing $q^2+(n-q-1)^2$ over range $0\leq q\leq n-1$ 04-18: Quicksort

Maximizing $q^2 + (n - q - 1)^2$ over range $0 \le q \le n - 1$

- 2nd derivative with respect to q is positive
- Maximim value needs to occur at the endpoints: q = 0 or q = n 1

04-19: Quicksort

$$T(n) \leq \max_{0 \leq q \leq n-1} c_1 q^2 + c_1 (n-q-1)^2 + c_2 * n$$

$$\leq c_1 * \max_{0 \leq q \leq n-1} (q^2 + (n-q-1)^2) c_1 + c_2 * n$$

$$\leq c_1 (n-1)^2 + c_2 * n$$

$$\leq c_1 n^2 - 2c_1 n + c_1 + c_2 * n$$

$$\leq c_1 n^2$$

(if $c_1 > c_2/2$) 04-20: **Quicksort**

- Average case:
 - What is the average case?
 - We can *assume* that all permutations of the list are equally likely (is this a good assumption?)
 - What else can we do?

04-21: Partition

```
Partition(A, low, high)

pivot = A[high]

i \leftarrow low - 1

for j \leftarrow low to high - 1 do

if (A[j] \leq pivot) then

i \leftarrow i + 1

swap A[i] \leftrightarrow A[j]

swap A[i+1] \leftrightarrow A[hight]
```

04-22: Randomized Partition

```
Partition(A, low, high)

swap A[high] \leftrightarrow A[random(low,high)]

pivot = A[high]

i \leftarrow low - 1

for j \leftarrow low to high - 1 do

if (A[j] \leq pivot) then

i \leftarrow i + 1

swap A[i] \leftrightarrow A[j]

swap A[i+1] \leftrightarrow A[hight]
```

04-23: Quicksort Analysis

- OK, we can assume that all permutations are equally likely (especially if we randomize partition)
- How long does quicksort take in the average case?

04-24: Quicksort Analysis

- Time for quicksort dominated by time spent in partition procedure
- Partition can be called a maximum of *n* times (why)?
- Time for each call to partition is $\Theta(1)$ + # of times through for loop
- Total number of times the test $(A[j] \le pivot)$ is done is proportional to the time spent for the loop
- Therefore, the total # of times the test $(A[j] \le pivot)$ is a bound on the time for the entire algorithm

04-25: Quicksort Analysis

Some definitions:

- Define z_i to be the *i*th smallest element in the list
- Define Z_{ij} to be the set of elements $z_i, z_{i+1}, \ldots z_j$

So, if our array $A = \{3, 4, 1, 9, 10, 7\}$ then:

- $z_1 = 1, z_2 = 3, z_3 = 4$, etc
- $Z_{35} = \{4, 7, 9\}$
- $Z_{46} = \{7, 9, 10\}$

04-26: Quicksort Analysis

- Each pair of elements can be compared at most once (why)?
- Define an indicator variable $X_{ij} = I\{z_i \text{ is compared to } z_j\}$

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$$

$$E[X] = E[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}]$$

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr\{z_i \text{ compared to } z_j\}$$

04-27: Quicksort Analysis

- Calculating $E[X_{ij}]$:
 - When will element z_i be compared to z_j ?
- $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- If pivot = 6
 - 6 will be compared to every other element
 - 1-5 will never be compared to anything in 7-10

04-28: Quicksort Analysis

- Calculating $E[X_{ij}]$:
 - Given any two elements z_i, z_j , if we pick some element x as a pivot such that $z_i < x < z_j$, then z_i and z_j will never be compared to each other
 - z_i and z_j will be compared with each other when the first element chosen Z_{ij} is either z_i or z_j

04-29: Quicksort Analysis

 $Pr\{z_i \text{ is compared to } z_j\} = Pr\{z_i \text{ or } z_j \text{ is first pivot selected from } Z_{ij} \\ = Pr\{z_i \text{ is first from } Z_{ij}\} + Pr\{z_j \text{ is first from } Z_{ij}\} \\ = 1/(j - i + 1) + 1/(j - i + 1) \\ = 2/(j - i + 1) 04-30:$ Quicksort Analysis

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

=
$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

=
$$\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$

<
$$\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k}$$

<
$$\sum_{i=1}^{n-1} 2\ln(n-i) + 1$$

04-31: Quicksort Analysis

$$E[X] < \sum_{i=1}^{n-1} 2\ln(n-i) + 1$$

<
$$\sum_{i=1}^{n-1} 2\ln(n) + 1$$

<
$$2 * n \ln(n) + 1$$

<
$$O(n \lg n)$$

04-32: Alternate Parition strategy

 $\begin{array}{l} Partition(A, low, high) \\ pivot = A[high] \\ i = low \\ j = high - 1 \\ while (i < j) \\ while (A[i] < pivot) \\ i++ \\ while (A[j] > pivot) \\ j - - \end{array}$

if (i < j)swap $A[i] \leftrightarrow A[j]$ i++ j - swap $A[i] \leftrightarrow A[high]$

04-33: Alternate Parition strategy

```
\begin{array}{l} \mbox{Partition}(A, low, high) \\ \mbox{pivot} = A[high] \\ \mbox{i} = low \\ \mbox{j} = high - 1 \\ \mbox{while} (i < j) \\ \mbox{while} (A[i] \leq pivot) \\ \mbox{i} + + \\ \mbox{while} (A[j] \geq pivot) \\ \mbox{j} - - \\ \mbox{if} (i < j) \\ \mbox{swap} A[i] \leftrightarrow A[j] \\ \mbox{i} + + \\ \mbox{j} - - \\ \mbox{swap} A[i] \leftrightarrow A[high] \end{array}
```

What happens if we change < to \leq ? 04-34: **Comparison Sorting**

- Comparison sorts work by comparing elements
 - Can only compare 2 elements at a time
 - Check for <, >, =.
- All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts
- If we know nothing about the list to be sorted, we need to use a comparison sort

04-35: **Decision Trees** Insertion Sort on list $\{a, b, c\}$

04-36: Decision Trees

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

04-37: Decision Trees

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - (The depth of the shallowest leaf) + 1
- What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

04-38: Decision Trees

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - (The depth of the shallowest leaf) + 1
- What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - The height of the tree (depth of the deepest leaf) + 1

04-39: Decision Trees

• What is the largest number of nodes for a tree of depth d?

04-40: Decision Trees

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has *n* leaves?

04-41: Decision Trees

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has *n* leaves?
 - $\lg n$
- How many leaves are there in a decision tree for sorting *n* elements?

04-42: Decision Trees

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has *n* leaves?
 - $\lg n$

- How many leaves are there in a decision tree for sorting *n* elements?
 - n!
- What is the minimum height, for a decision tree for sorting *n* elements?

04-43: Decision Trees

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has *n* leaves?
 - $\lg n$
- How many leaves are there in a decision tree for sorting *n* elements?
 - *n*!
- What is the minimum height, for a decision tree for sorting n elements?
 - $\lg n!$

04-44: $\lg(n!) \in \Omega(n \lg n)$

$$\begin{split} \lg(n!) &= & \lg(n*(n-1)*(n-2)*\ldots*2*1) \\ &= & (\lg n) + (\lg(n-1)) + (\lg(n-2)) + \ldots \\ &+ (\lg 2) + (\lg 1) \\ &\geq & \underbrace{(\lg n) + (\lg(n-1)) + \ldots + (\lg(n/2))}_{n/2 \text{ terms}} \\ &\geq & \underbrace{(\lg n/2) + (\lg(n/2)) + \ldots + \lg(n/2)}_{n/2 \text{ terms}} \\ &= & (n/2) \lg(n/2) \\ &\in & \Omega(n \lg n) \end{split}$$

04-45: Sorting Lower Bound

- All comparison sorting algorithms can be represented by a decision tree with n! leaves
- Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height of the tree
- A decision tree with n! leaves must have a height of at least $n \lg n$
- All comparison sorting algorithms have worst-case running time $\Omega(n \lg n)$