CS673-2016F-04 Sorting I

04-0: Divide & Conquer

e Divide a problem into 2 or more smaller subproblems
e Recursively solve each subproblem
e Combine the solutions of the subproblems

04-1: Divide & Conquer
e Mergesort:

e Divide the list in half
e Recursively sort each half of the list

e Merge the sorted lists together
e Dividing the list is easy (no real work required)
e Combining solutions harder
04-2: Divide & Conquer
e Quicksort:

e Pick a pivot element
e Divide the list into elements < pivot, elements > pivot
e Recursively sort each of these two segments

e No work required after recursive step
e Dividing the list is harder
e Combining solutions is easy (no real work required)

04-3: Quicksort

Quicksort(A, low, high)
if (low < high) then
pivotindex < Partition(A, low, high)
Quicksort(A, low, pivotindex — 1)
Quicksort(A, pivotindex + 1, high)

04-4: Quicksort
e How can we efficiently partition the list?

04-5: Quicksort

e How can we efficiently partition the list?
e Method 1:

e Maintain two indices, ¢ and j

e Everything to left of ¢ < pivot

CS673-2016F-04 Sorting I

e Everything to right if j > pivot

e Start ¢ at beginning of the list, j at the end of the list, move them in maintaining the conditions above

04-6: Quicksort

e How can we efficiently partition the list?
e Method 2:

e Maintain two indices, ¢ and j
e Everything to left of ¢ < pivot
e Everything between 7 and 7 > pivot

e Start both ¢ and j at beginning of the list, increase them while maintaining the conditions above
04-7: Partition

Partition(A, low, high)

pivot = A[high]

i< low-1

for j <— low to high - 1 do

if (A[j] < pivot then

i—i+1
swap Ali] < A[j]

swap A[i+1] <+ Afhigh]

04-8: Partition
Partition example:

57136284
04-9: Quicksort

e Running time for Quicksort: Intuition

o Worst case: list is split into size 0, size (n-1)

Tn) = Tn-1)+T7(0)+06(n)
T(n—1)+0(n)

Recursion Tree
04-10: Quicksort

CS673-2016F-04 Sorting I

_ n cn
a ? 1)\\ a+c(n-1)
a c(n-2) a+c(n-2)
= RN
a c(n-3) a+c(n-3

n
(n-Da+2c
i=1
04-11: Quicksort
Confirm O(n?) with substitution method:

T(n) = Tnh—1)+cx*n

04-12: Quicksort
Confirm O(n?) with substitution method:

T(n) = Tn—1)+cx*n
< cax(n—172%+cxn
< ex(mP=2n+1)+cxn
< a*n’4(c—2%c+1/n)xn
< ¢ xn?
(if ¢y > (¢ +1/n)/2)
04-13: Quicksort
Confirm ©(n?) with substitution method:
T(n) = Tn—1)+cxn

cix(n—124cxn
cix(n?=2n+1)+cxn
c1x(n? —2n) +cxn
c1xn?+(c—2%c)*n

C1 *n2

VIV IV IV IV

CS673-2016F-04 Sorting I

(ifc1 > ¢/2)
04-14: Quicksort

e Running time for Quicksort: Intuition

e Best case: list is split in half

T(n) = 2T(g)+c*n
O(nlgn)

m

(Using the master theorem) 04-15: Quicksort

e Running time for Quicksort: Intuition

e Average case:

e What if we split the problem into size (1/9)n and (8/9)n
e What if we split the problem into size (1/100)n and (99/100)n

(Show recursion trees) 04-16: Quicksort

e Worst Case:

T(n)= max T(¢)+T(n—qg—1)+0(n)

0<g<n—1

04-17: Quicksort

e Worst Case:

T(n) = o I8 T(q)+T(n—q—1)+06(n)

Guess T'(n) € O(n?)

< 2 _g—1)2
T(n) < Ogr;l;)l(_lﬁq +ean—g—1)*+caxn

< 2 —g—1)2
< Cl*ogglgaf 1(q +(n—qg—1)%c1 +caxn

Maximizing ¢> + (n — ¢ — 1)? overrange 0 < ¢ < n — 1
04-18: Quicksort
Maximizing g2 + (n — ¢ — 1)? overrange 0 < g <n — 1

e 2nd derivative with respect to ¢ is positive

e Maximim value needs to occur at the endpoints: ¢ =0org=n —1

CS673-2016F-04 Sorting I

04-19: Quicksort

< 2 _g—1)2
T(n) < 0;;?57161(] +ean—g—1) +caxn
< g max (P+(n—qg—1)Hcr+coxn

0<g<n-—1
ci(n—1)* +caxn
cln2 —2cin+4c1 +caxn

cln2

ININCIA

(ifcq > 62/2)
04-20: Quicksort

e Average case:

e What is the average case?
e We can assume that all permutations of the list are equally likely (is this a good assumption?)

e What else can we do?

04-21: Partition

Partition(A, low, high)

pivot = A[high]

i< low-1

for j <— low to high - 1 do

if (A[j] < pivot) then

i—i+1
swap Ali] < A[j]

swap A[i+1] <> Afhight]

04-22: Randomized Partition

Partition(A, low, high)
swap A[high] <+ A[random(low,high)]
pivot = A[high]
i< low-1
for j <— low to high - 1 do
if (A[j] < pivot) then
i—i+1
swap Ali] < A[j]
swap A[i+1] <> A[hight]

04-23: Quicksort Analysis

e OK, we can assume that all permutations are equally likely (especially if we randomize partition)
e How long does quicksort take in the average case?

04-24: Quicksort Analysis

CS673-2016F-04 Sorting I

Time for quicksort dominated by time spent in partition procedure

e Partition can be called a maximum of n times (why)?

Time for each call to partition is ©(1) + # of times through for loop

Total number of times the test (A[j] < pivot) is done is proportional to the time spent for the loop

e Therefore, the total # of times the test (A[j] < pivot) is a bound on the time for the entire algorithm

04-25: Quicksort Analysis
Some definitions:

e Define z; to be the ith smallest element in the list
e Define Z;; to be the set of elements z;, zj+1, ... 2;
So, if our array A = {3,4, 1,9, 10, 7} then:
e 21 =1,29 =3,23 =4,etc
o Z35={4,7,9}
o Z4s=17,9,10}

04-26: Quicksort Analysis

e Each pair of elements can be compared at most once (why)?
e Define an indicator variable X;; = I{z; is compared to z;}

n—1 n
Xo= D 2 Xy

i=1 j=i+1

Bx] = B Y Xy

i=1 j=i+1

Bx] = 3% BIXy]

i=1 j=i+1

n—1 n
E[X] = Z Z Pr{z; compared to z;}
i=1 j=i+1

04-27: Quicksort Analysis
e Calculating F[X;;]:
e When will element z; be compared to z;?
e A={1,2,3,4,56,7,8,9,10}
o If pivot=6

e 6 will be compared to every other element

e [-5 will never be compared to anything in 7-10

CS673-2016F-04 Sorting I 7

04-28: Quicksort Analysis
e Calculating F[X;;]:

e Given any two elements z;, z;, if we pick some element x as a pivot such that z; < x < zj;, then 2; and z;
will never be compared to each other

e z; and z; will be compared with each other when the first element chosen Z;; is either z; or z;

04-29: Quicksort Analysis

Pr{ z; is compared to 2 ; } Pr{z; or z ; is first pivot selected from Z; ;

Pr{z; isfirst from Z; ; } + Pr{ 2 ; is first from Z; ; }
/@G —i+1)+1/(G—i+1)
2/(G—i+1)

04-30: Quicksort Anaiysis

E[X]

i: Z E[Xi]

i=1 j=it1
n—1 n 2
12:21 j;q i+l
n—i
2
D i

n—1

|
™
>
Il
—

1
1

3

A
™
El N

>
Il

3

=1 1
1

3 =

2In(n—1i)+1
1

04-31: Quicksort Analysis

E[X] < inn(n—i)-i—l
< inn(n)—i—l

i=1

04-32: Alternate Parition strategy

Partition(A, low, high)
pivot = A[high]
i=low
j=high-1
while (i < j)
while (A[i] < pivot)
i++
while (A[j] > pivot)
J - -

CS673-2016F-04 Sorting I

if 1 <j)
swap Ali] < A[j]
i++
j--
swap A[i] <+ Alhigh]

04-33: Alternate Parition strategy

Partition(A, low, high)
pivot = A[high]
i=low
j=high- 1
while (i < j)
while (A[i] < pivot)
i+
while (A[j] > pivot)
j--
if (i < j)
swap A[i] <> Alj]
i+

j--
swap Ali] <> Alhigh]

What happens if we change < to <?
04-34: Comparison Sorting

e Comparison sorts work by comparing elements
e Can only compare 2 elements at a time
e Check for <, >, =.
o All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts
o If we know nothing about the list to be sorted, we need to use a comparison sort
04-35: Decision Trees Insertion Sort on list {a, b, ¢}
a<b<c b<c<a

a<c<b c<a<b
b<a<c c<b<a

a<b b<a
a<b<c b<a<c
a<c<b b<c<a
c<a<b c<b<a
S = N\
a<b<c a<c<b b<a<c b<c<a
c<a<b c<b<a
V &a b</M \c<b
a<c<b c<a<b b<c<a c<b<a

04-36: Decision Trees

e Every comparison sorting algorithm has a decision tree

e What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the

algorithm?

CS673-2016F-04 Sorting I 9

04-37:

04-38:

04-39:

04-40:

04-41:

04-42:

Decision Trees

Every comparison sorting algorithm has a decision tree

What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the
algorithm?

e (The depth of the shallowest leaf) + 1

What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for
the algorithm?

Decision Trees

Every comparison sorting algorithm has a decision tree

What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the
algorithm?

e (The depth of the shallowest leaf) + 1

What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for
the algorithm?

e The height of the tree — (depth of the deepest leaf) + 1
Decision Trees
What is the largest number of nodes for a tree of depth d?
Decision Trees
What is the largest number of nodes for a tree of depth d?
o 24
What is the minimum height, for a tree that has n leaves?
Decision Trees
What is the largest number of nodes for a tree of depth d?
o 24
What is the minimum height, for a tree that has n leaves?
o lgn
How many leaves are there in a decision tree for sorting n elements?
Decision Trees
What is the largest number of nodes for a tree of depth d?
o 24
What is the minimum height, for a tree that has n leaves?

e lgn

CS673-2016F-04 Sorting I 10

e How many leaves are there in a decision tree for sorting n elements?
e n!

e What is the minimum height, for a decision tree for sorting n elements?

04-43: Decision Trees

e What is the largest number of nodes for a tree of depth d?
o 2¢
e What is the minimum height, for a tree that has n leaves?
e lgn
e How many leaves are there in a decision tree for sorting n elements?
e n!
e What is the minimum height, for a decision tree for sorting n elements?
e lgn!

04-44: 1g(n!) € Q(nlgn)

lg(n!) = lg(nx(n—1)*%x(n—2)%...%x2x1)
= (Ign)+ (Ig(n — 1))+ (lg(n —2)) + ...
+(g2) + (1)

> (Ign)+ (Ign—1))+ ...+ (Ig(n/2))
n/2 terms

> (Ign/2)+ (Ig(n/2)) + ... +1g(n/2)
n/2 terms

= (n/2)1g(n/2)

€ Qnlgn)

04-45: Sorting Lower Bound

e All comparison sorting algorithms can be represented by a decision tree with n! leaves

e Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height
of the tree

e A decision tree with n! leaves must have a height of at least n1gn

e All comparison sorting algorithms have worst-case running time Q(nlgn)

