Graduate Algorithms CS673-2016F-06 Selection Probelm

David Galles

Department of Computer Science University of San Francisco

06-0: Finding Max & Min

- What is the smallest exact number of comparisons required to find the maximum element of a list with *n* elements?
- What is the smallest exact number of comparisons required to find the minimum element of a list of *n* elements?
- What is the smallest number of comparisons required to find the maximum and minimum elements of a list?

06-1: Finding Max & Min

- What is the smallest number of comparisons required to find the maximum element of a list? (n-1)
- What is the smallest number of comparisons required to find the minimum element of a list? (n-1)
- What is the smallest number of comparisons required to find the maximum and minimum elements of a list?
 - Compare pairs: then compare the largest to the current largest, and smallest to the current smallest $\lceil \frac{n}{2}\rceil + (n-2)$

06-2: Selection Problem

- What if we want to find the *k*th smallest element?
 - Median: $k = \lceil \frac{n}{2} \rceil$ th smallest element, for odd n
- What is the obvious method?
- Can we do better?

06-3: Selection Problem

- What if we want to find the *k*th smallest element?
 - Median: $k = \lceil \frac{n}{2} \rceil$ th smallest element, for odd n
- What is the obvious method?
 - Sort the list, select the element at index \boldsymbol{k}
- Can we do better?

06-4: Selection Problem

Quicksort(A, low, high) if (low < high) then pivotindex ← Partition(A, low, high) Quicksort(A, low, pivotindex 1) Quicksort(A, pivotindex + 1, high)

```
Partition(A, low, high)

pivot = A[high]

i \leftarrow low - 1

for j \leftarrow low to high - 1 do

if (A[j] \leq pivot) then

i \leftarrow i + 1

swap A[i] \leftrightarrow A[j]

swap A[i+1] \leftrightarrow A[high]

return i+1
```

```
Select(A, low, high, k)
   if (low = high)
       return A[low]
   pivot = Partition(A, low, high)
   adj pivot = piv - low + 1
   if (k = adj pivot) then
       return A[pivot]
   if (k < adj pivot) then
       return Select(A,low,pivot-1, k)
   else
       return Select(A,pivot+1, high, k-adj pivot)
```

Running time (Best and worst case)?

06-6: Selection Problem

• Best case time:

$$T(n) = T(n/2) + c * n \in \Theta(n)$$

• Worst case time:

$$T(n) = T(n-1) + c * n \in \Theta(n^2)$$

 Average case time turns out to be Θ(n), but we'd like to get the worst-case time down.

06-7: Selection Problem

- Improving worst-case time for selection
 - We need to guarantee a "good" pivot to get $\Theta(n)$ time for selection
 - How much time can we spend to find a good pivot, and still get $\Theta(n)$ time for selection?

06-8: Selection Problem

- Improving worst-case time for selection
 - We need to guarantee a "good" pivot to get $\Theta(n)$ time for selection
 - How much time can we spend to find a good pivot, and still get $\Theta(n)$ time for selection?
 - O(n) !

06-9: Selection Problem

- Finding a "Good" pivot (one that is near the median) in linear time:
 - Split the list into $\frac{n}{5}$ list of length 5
 - Do an insertion sort on each of the $\frac{n}{5}$ lists to find the median of each of these lists
 - Call select recursively to find the median of the $\frac{n}{5}$ medians

06-10: Selection Problem

06-11: Selection Problem

06-12: Selection Problem

06-13: Selection Problem

- How good is the pivot chosen by this method? How many elements are guaranteed to be less than the pivot?
 - Each row has 5 elements
 - Half of the rows will have a median less than the pivot
 - Each of these rows will have 3 elements less than the pivot

$$3 * \left\lceil \left\lceil \frac{n}{5} \right\rceil \frac{1}{2} \right\rceil$$

06-14: Selection Problem

$3 * \left\lceil \frac{n}{5} \right\rceil \frac{1}{2}$

- Not all of those rows have exactly 3 elements less than the pivot:
 - The total number of elements might not be divisible by 5 (so one row would have < 5 elements
 - The row containing the pivot itself only has 2 elements less than the pivot (not 3)
- So, we will omit those two rows, leaving: $3 * \left(\left\lceil \frac{n}{5} \right\rceil \frac{1}{2} \right\rceil - 2 \right) \ge \frac{3n}{10} - 6$

06-15: Selection Problem

- Worst case time for selection for a problem of size n:
 - $\Theta(n)$ time to do partition, n/5 insertion sorts
 - Time to find the median of medians (looking at n/5 elements)
 - Time to make the recursive call (to a problem of no more than size 7n/10+6

06-16: Selection Problem

$$T(n) \leq \begin{cases} C_1 & \text{if } n < 140 \\ T(\lceil \frac{n}{5} \rceil) + T(\frac{7n}{10} + 6) + C_2 * n & \text{otherwise} \end{cases}$$

$$T(n) \leq T\left(\left\lceil \frac{n}{5} \right\rceil\right) + T\left(\frac{7n}{10} + 6\right) + C_2 * n$$

$$\leq \frac{C * n}{5} + C + \frac{7 * C * n}{10} + 6 * C + C_2 * n$$

$$= \frac{9 * C * n}{10} + 7 * C + C_2 * n$$

$$= C * n + \left(7 * C + C_2 * n - \frac{C * n}{10}\right)$$

$$7 * C + C_2 * n - \frac{C * n}{10} \leq 0$$

$$C * \left(7 - \frac{n}{10}\right) \leq -C_2 * n$$

$$C * \left(\frac{n}{10} - 7\right) \geq C_2 * n$$

$$C \geq C_2 * n/(n/10 - 7)$$

$$C \geq 10 * C_2 * (n/(n - 70))$$

Note that we must insist that n > 70. If $n \ge 140$, then this is true if $C > 20 * C_2$

06-19: Selection Problem

- Selection takes time O(n)
 - in fact, $\Theta(n),$ since each recursion steps takes time $\Omega(n)$
- So, we can use Selection to make Quicksort take time $\Theta(n \lg n)$ worst case
 - Would that be a good idea?