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06-0: Finding Max & Min

What is the smallest exact number of comparisons
required to find the maximum element of a list with
n elements?

What is the smallest exact number of comparisons
required to find the minimum element of a list of n
elements?

What is the smallest number of comparisons
required to find the maximum and minimum
elements of a list?



06-1: Finding Max & Min

What is the smallest number of comparisons
required to find the maximum element of a list?
(n− 1)

What is the smallest number of comparisons
required to find the minimum element of a list?
(n− 1)

What is the smallest number of comparisons
required to find the maximum and minimum
elements of a list?

Compare pairs: then compare the largest to the
current largest, and smallest to the current

smallest
⌈

n

2

⌉

+ (n− 2)



06-2: Selection Problem

What if we want to find the kth smallest element?

Median: k = ⌈n

2
⌉th smallest element, for odd n

What is the obvious method?

Can we do better?



06-3: Selection Problem

What if we want to find the kth smallest element?

Median: k = ⌈n

2
⌉th smallest element, for odd n

What is the obvious method?

Sort the list, select the element at index k

Can we do better?



06-4: Selection Problem

Quicksort(A, low, high)

if (low < high) then

pivotindex← Partition(A, low, high)

Quicksort(A, low, pivotindex 1)

Quicksort(A, pivotindex + 1, high)

Partition(A, low, high)

pivot = A[high]

i← low - 1

for j← low to high - 1 do

if (A[j] ≤ pivot) then

i← i + 1

swap A[i]↔ A[j]

swap A[i+1]↔ A[high]

return i+1



06-5: Selection Problem

Select(A,low,high,k)
if (low = high)

return A[low]
pivot = Partition(A, low, high)
adj_pivot = piv - low + 1
if (k = adj_pivot) then

return A[pivot]
if (k < adj_pivot) then

return Select(A,low,pivot-1, k)
else

return Select(A,pivot+1, high, k-adj_pivot)

Running time (Best and worst case)?



06-6: Selection Problem

Best case time:

T (n) = T (n/2) + c ∗ n ∈ Θ(n)

Worst case time:

T (n) = T (n− 1) + c ∗ n ∈ Θ(n2)

Average case time turns out to be Θ(n), but we’d
like to get the worst-case time down.



06-7: Selection Problem

Improving worst-case time for selection

We need to guarantee a “good” pivot to get

Θ(n) time for selection

How much time can we spend to find a good

pivot, and still get Θ(n) time for selection?



06-8: Selection Problem

Improving worst-case time for selection

We need to guarantee a “good” pivot to get

Θ(n) time for selection

How much time can we spend to find a good

pivot, and still get Θ(n) time for selection?

O(n) !



06-9: Selection Problem

Finding a “Good” pivot (one that is near the
median) in linear time:

Split the list into n

5
list of length 5

Do an insertion sort on each of the n

5
lists to

find the median of each of these lists

Call select recursively to find the median of the
n

5
medians



06-10: Selection Problem



06-11: Selection Problem



06-12: Selection Problem



06-13: Selection Problem

How good is the pivot chosen by this method?
How many elements are guaranteed to be less
than the pivot?

Each row has 5 elements

Half of the rows will have a median less than
the pivot

Each of these rows will have 3 elements less
than the pivot

3 ∗

⌈

⌈n

5

⌉ 1

2

⌉



06-14: Selection Problem

3 ∗
⌈⌈

n

5

⌉

1

2

⌉

Not all of those rows have exactly 3 elements less
than the pivot:

The total number of elements might not be
divisible by 5 (so one row would have < 5
elements

The row containing the pivot itself only has 2
elements less than the pivot (not 3)

So, we will omit those two rows, leaving:

3 ∗
(⌈⌈

n

5

⌉

1

2

⌉

− 2
)

≥ 3n

10
− 6



06-15: Selection Problem

Worst case time for selection for a problem of size
n:

Θ(n) time to do partition, n/5 insertion sorts

Time to find the median of medians (looking at

n/5 elements)

Time to make the recursive call (to a problem of
no more than size 7n/10 + 6



06-16: Selection Problem

T (n) ≤

{

C1 if n < 140

T (⌈n

5
⌉) + T (7n

10
+ 6) + C2 ∗ n otherwise



06-17: Selection Problem

T (n) ≤ T
(

⌈
n

5
⌉
)

+ T

(

7n

10
+ 6

)

+ C2 ∗ n

≤
C ∗ n

5
+ C +

7 ∗ C ∗ n

10
+ 6 ∗ C + C2 ∗ n

=
9 ∗ C ∗ n

10
+ 7 ∗ C + C2 ∗ n

= C ∗ n+

(

7 ∗ C + C2 ∗ n−
C ∗ n

10

)



06-18: Selection Problem

7 ∗ C + C2 ∗ n−
C ∗ n

10
≤ 0

C ∗
(

7−
n

10

)

≤ −C2 ∗ n

C ∗
( n

10
− 7

)

≥ C2 ∗ n

C ≥ C2 ∗ n/(n/10− 7)

C ≥ 10 ∗ C2 ∗ (n/(n− 70))

Note that we must insist that n > 70. If n ≥ 140, then
this is true if C > 20 ∗ C2



06-19: Selection Problem

Selection takes time O(n)

in fact, Θ(n), since each recursion steps takes

time Ω(n)

So, we can use Selection to make Quicksort take
time Θ(n lg n) worst case

Would that be a good idea?
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