
CS673-2016F-06 Selection Probelm 1

06-0: Finding Max & Min

• What is the smallest exact number of comparisons required to find the maximum element of a list with n
elements?

• What is the smallest exact number of comparisons required to find the minimum element of a list of n elements?

• What is the smallest number of comparisons required to find the maximum and minimum elements of a list?

06-1: Finding Max & Min

• What is the smallest number of comparisons required to find the maximum element of a list? (n− 1)

• What is the smallest number of comparisons required to find the minimum element of a list? (n− 1)

• What is the smallest number of comparisons required to find the maximum and minimum elements of a list?

• Compare pairs: then compare the largest to the current largest, and smallest to the current smallest
⌈

n

2

⌉

+
(n− 2)

06-2: Selection Problem

• What if we want to find the kth smallest element?

• Median: k = ⌈n

2
⌉th smallest element, for odd n

• What is the obvious method?

• Can we do better?

06-3: Selection Problem

• What if we want to find the kth smallest element?

• Median: k = ⌈n

2
⌉th smallest element, for odd n

• What is the obvious method?

• Sort the list, select the element at index k

• Can we do better?

06-4: Selection Problem

Quicksort(A, low, high)

if (low ¡ high) then

pivotindex← Partition(A, low, high)

Quicksort(A, low, pivotindex 1)

Quicksort(A, pivotindex + 1, high)

Partition(A, low, high)

pivot = A[high]

i← low - 1

for j← low to high - 1 do

if (A[j]≤ pivot) then

i← i + 1

swap A[i]↔ A[j]

swap A[i+1]↔ A[high]

return i+1

06-5: Selection Problem

CS673-2016F-06 Selection Probelm 2

Select(A,low,high,k)

if (low = high)

return A[low]

pivot = Partition(A, low, high)

adj pivot = piv - low + 1

if (k = adj pivot) then

return A[pivot]

if (k ¡ adj pivot) then

return Select(A,low,pivot-1, k)

else

return Select(A,pivot+1, high, k-adj pivot)

Running time (Best and worst case)?

06-6: Selection Problem

• Best case time:

T (n) = T (n/2) + c ∗ n ∈ Θ(n)

• Worst case time:

T (n) = T (n− 1) + c ∗ n ∈ Θ(n2)

• Average case time turns out to be Θ(n), but we’d like to get the worst-case time down.

06-7: Selection Problem

• Improving worst-case time for selection

• We need to guarantee a “good” pivot to get Θ(n) time for selection

• How much time can we spend to find a good pivot, and still get Θ(n) time for selection?

06-8: Selection Problem

• Improving worst-case time for selection

• We need to guarantee a “good” pivot to get Θ(n) time for selection

• How much time can we spend to find a good pivot, and still get Θ(n) time for selection?

• O(n) !

06-9: Selection Problem

• Finding a “Good” pivot (one that is near the median) in linear time:

• Split the list into n

5
list of length 5

• Do an insertion sort on each of the n

5
lists to find the median of each of these lists

• Call select recursively to find the median of the n

5
medians

CS673-2016F-06 Selection Probelm 3

06-10: Selection Problem

06-11: Selection Problem

06-12: Selection Problem

06-13: Selection Problem

• How good is the pivot chosen by this method? How many elements are guaranteed to be less than the pivot?

• Each row has 5 elements

• Half of the rows will have a median less than the pivot

• Each of these rows will have 3 elements less than the pivot

3 ∗

⌈

⌈n

5

⌉ 1

2

⌉

06-14: Selection Problem

3 ∗
⌈⌈

n

5

⌉

1

2

⌉

• Not all of those rows have exactly 3 elements less than the pivot:

• The total number of elements might not be divisible by 5 (so one row would have < 5 elements

• The row containing the pivot itself only has 2 elements less than the pivot (not 3)

• So, we will omit those two rows, leaving: 3 ∗
(⌈⌈

n

5

⌉

1

2

⌉

− 2
)

≥ 3n

10
− 6

CS673-2016F-06 Selection Probelm 4

06-15: Selection Problem

• Worst case time for selection for a problem of size n:

• Θ(n) time to do partition, n/5 insertion sorts

• Time to find the median of medians (looking at n/5 elements)

• Time to make the recursive call (to a problem of no more than size 7n/10 + 6

06-16: Selection Problem

T (n) ≤

{

C1 if n < 140
T (⌈n

5
⌉) + T (7n

10
+ 6) + C2 ∗ n otherwise

06-17: Selection Problem

T (n) ≤ T
(

⌈
n

5
⌉
)

+ T

(

7n

10
+ 6

)

+ C2 ∗ n

≤
C ∗ n

5
+ C +

7 ∗ C ∗ n

10
+ 6 ∗ C + C2 ∗ n

=
9 ∗ C ∗ n

10
+ 7 ∗ C + C2 ∗ n

= C ∗ n+

(

7 ∗ C + C2 ∗ n−
C ∗ n

10

)

06-18: Selection Problem

7 ∗ C + C2 ∗ n−
C ∗ n

10
≤ 0

C ∗
(

7−
n

10

)

≤ −C2 ∗ n

C ∗
(n

10
− 7

)

≥ C2 ∗ n

C ≥ C2 ∗ n/(n/10− 7)

C ≥ 10 ∗ C2 ∗ (n/(n− 70))

Note that we must insist that n > 70. If n ≥ 140, then this is true if C > 20 ∗ C2

06-19: Selection Problem

• Selection takes time O(n)

• in fact, Θ(n), since each recursion steps takes time Ω(n)

• So, we can use Selection to make Quicksort take time Θ(n lgn) worst case

• Would that be a good idea?

