CS673-2016F-06 Selection Probelm 1

06-0: Finding Max & Min

e What is the smallest exact number of comparisons required to find the maximum element of a list with n
elements?

e What is the smallest exact number of comparisons required to find the minimum element of a list of n elements?

e What is the smallest number of comparisons required to find the maximum and minimum elements of a list?
06-1: Finding Max & Min

e What is the smallest number of comparisons required to find the maximum element of a list? (n — 1)
e What is the smallest number of comparisons required to find the minimum element of a list? (n — 1)
e What is the smallest number of comparisons required to find the maximum and minimum elements of a list?

e Compare pairs: then compare the largest to the current largest, and smallest to the current smallest [%W +
(n—2)

06-2: Selection Problem

e What if we want to find the kth smallest element?
e Median: k£ = [% |th smallest element, for odd n
e What is the obvious method?

e Can we do better?
06-3: Selection Problem

e What if we want to find the kth smallest element?

e Median: k£ = [% |th smallest element, for odd n
e What is the obvious method?

e Sort the list, select the element at index k&

e Can we do better?

06-4: Selection Problem

Quicksort(A, low, high)
if (low { high) then
pivotindex <— Partition(A, low, high)
Quicksort(A, low, pivotindex 1)
Quicksort(A, pivotindex + 1, high)

Partition(A, low, high)
pivot = Alhigh]
i<—low-1
for j <— low to high - 1 do
if (A[j] < pivot) then
ii+l
swap Ali] <> Alj]
swap A[i+1] <> Alhigh]
return i+l

06-5: Selection Problem

CS673-2016F-06 Selection Probelm

Select(A,low,high k)
if (low = high)
return A[low]
pivot = Partition(A, low, high)
adj_pivot = piv - low + 1
if (k = adj_pivot) then
return A[pivot]
if (k ; adj_pivot) then
return Select(A,low,pivot-1, k)
else
return Select(A,pivot+1, high, k-adj_pivot)

Running time (Best and worst case)?
06-6: Selection Problem

e Best case time:

T(n)=T(n/2)+cxn € O(n)

o Worst case time:

T(n)=T(n—1)+c*n € O(n?
e Average case time turns out to be ©(n), but we’d like to get the worst-case time down.

06-7: Selection Problem

e Improving worst-case time for selection

e We need to guarantee a “good” pivot to get ©(n) time for selection

e How much time can we spend to find a good pivot, and still get ©(n) time for selection?

06-8: Selection Problem

e Improving worst-case time for selection

e We need to guarantee a “good” pivot to get ©(n) time for selection

e How much time can we spend to find a good pivot, and still get ©(n) time for selection?

e O(n)!
06-9: Selection Problem

e Finding a “Good” pivot (one that is near the median) in linear time:

e Split the list into % list of length 5
e Do an insertion sort on each of the % lists to find the median of each of these lists

e Call select recursively to find the median of the ¢ medians

CS673-2016F-06 Selection Probelm

06-10: Selection Problem

([J ([J ([([J (] ([([J
[J [J ([[J ([] [[J
o o ©) o O ©) o
[J [J [[J (] ([[J
{ { [) { [) [) {
06-11: Selection Problem

[o ([o ([o []

[o ([o ([(] []

©) ©) ©)

[[[

[[[

06-12: Selection Problem

[] [] [
[] [] [
@) ©) O
[] [] o
[] [] [

06-13: Selection Problem

e How good is the pivot chosen by this method? How many elements are guaranteed to be less than the pivot?

e Each row has 5 elements
e Half of the rows will have a median less than the pivot

e Each of these rows will have 3 elements less than the pivot

nil
s[5
[[512]
06-14: Selection Problem
nl 1
3x[[5] 3]
e Not all of those rows have exactly 3 elements less than the pivot:
e The total number of elements might not be divisible by 5 (so one row would have < 5 elements

e The row containing the pivot itself only has 2 elements less than the pivot (not 3)

e So, we will omit those two rows, leaving: 3 * (H%] i1-2) > ?{—3 -6

CS673-2016F-06 Selection Probelm

06-15: Selection Problem

e Worst case time for selection for a problem of size n:

e O(n) time to do partition, n/5 insertion sorts
e Time to find the median of medians (looking at /5 elements)

e Time to make the recursive call (to a problem of no more than size 7n/10 + 6
06-16: Selection Problem

T(n) <{ Ch if n < 140

T([2])+T(% +6)+ Cy+n otherwise
06-17: Selection Problem

T(n) < T([21)+T<7—"+6>+02*n

5 10
< O*n—i—C—i—M—i—G*C—i—Cg*n
5 10
= M#—?*O%—C&*n
10
= C’*n—i—(?*C’—i—C'g*n—C*n)
10
06-18: Selection Problem
Cxn
TxC+Cyxn— 10 0
n
_ <
C*(? 10) < Cy*n
n
— >
C’*(lo) > (Coxn
C > Cyxn/(n/10-7)
C > 10%Cqyx(n/(n—70))

Note that we must insist that n > 70. If n > 140, then this is true if C' > 20 x Cy
06-19: Selection Problem

e Selection takes time O(n)
e in fact, ©(n), since each recursion steps takes time Q(n)
e So, we can use Selection to make Quicksort take time O (n lgn) worst case

e Would that be a good idea?

