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07-0: Binary Search Trees

Binary Trees

For each node n, (value stored at node n) > (value
stored in left subtree)

For each node n, (value stored at node n) < (value
stored in right subtree)



07-1: Example Binary Search Trees
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07-2: Example Binary Search Trees

Examples:

Finding an element

Inserting an element

Deleting an element



07-3: Running Times

Best-Case upper limit on the time for
insert/delete/find of an element for a BST with n

elements?

Worst-Case upper limit on the time for
insert/delete/find for a BST with n elements?

Expected upper limit on the time for
insert/delete/find for a BST with n elements?

What would we mean by “expected” in this
instance?



07-4: Running Times

Best-Case upper limit on the time for
insert/delete/find of an element for a BST with n

elements?

O(lg n), if the tree is balanced

Worst-Case upper limit on the time for
insert/delete/find for a BST with n elements?

O(n), if the tree is a list

Expected upper limit on the time for
insert/delete/find for a BST with n elements?

O(lg n), if elements are inserted in random
order



07-5: Balanced BSTs

We can guarantee O(lg n) running time for
insert/find/delete if we can guarantee the tree is
balanced

Several methods for guaranteeing a balanced tree

AVL trees & Red-Black trees are the most
common

We’ll look at Red-Black Trees



07-6: Red-Black Trees

Red-Black Trees as Binary Search trees, with “Null
Leaves”

Examples of BSTs with “Null Leaves”

(Null leaves are mostly a notational
convenience)



07-7: Red-Black Trees

Red-Black Trees are Binary Search trees, with
“Null Leaves”, and the following properties:

Every Node is either Red or Black

(Root is Black) <Not strictly required>

Each null “leaf” is Black

If a node is red, both children are black

For each node, all paths from the node to
descendant leaves contain the same number of
black nodes



07-8: Red-Black Trees
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07-9: Red-Black Trees
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Example Red-Black tree (“Null Leaves” left out for
clarity)



07-10: Red-Black Trees

In a Red-Black tree, what is the greatest possible
difference in the length of the path from the root to
two different leaves?

What is the largest height of a Red-Black tree that
contains n elements?



07-11: Red-Black Trees

Let bh(X) be the "Black Height” of a node – the
number of black nodes on a path from that node to
a leaf (not including the node itself)

The subtree rooted at any node X has at least

2bh(X)
− 1 internal (non-leaf) nodes

Proof by induction (on board)



07-12: Tree Rotations
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07-13: Tree Insertions

Always insert red nodes

Which property would be violated by inserting a
red node?



07-14: Tree Insertions

Always insert red nodes

Which property would be violated by inserting a
red node?

Could have a red node with a red child

Fix using tree rotations



07-15: Tree Insertions

To fix a red node with red child:

Case 1: Uncle is red

Case 2: Uncle is black, Inserted node is right
child of parent, and parent is a left child of
Grandparent (or node is left child, parent is right
child)

Case 3: Uncle is black, Node is left child of
parent, parent is left child of Grandparent (or
node is righ child, parent is right child)



07-16: Case 1

Red Uncle
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07-17: Case 1

Red Uncle
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07-18: Case 2

Black Uncle / parent child different handedness
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07-19: Case 3

Black Uncle / parent child same handedness
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07-20: Case 3

Black Uncle / parent child same handedness
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07-21: Deleting nodes

Deleting nodes

Delete nodes just like in standard BST

Which properties could be violated by deleting
a red node?

Each node red or black
Black Root
Each red node has 2 black children
Black path length to leaves same for each
node



07-22: Deleting nodes

Deleting nodes

Delete nodes just like in standard BST

Which properties could be violated by deleting
a red node?

None!



07-23: Deleting Nodes

Deleting nodes

Delete nodes just like in standard BST

Which properties could be violated by deleting
a black node?

Each node red or black
Black Root
Each red node has 2 black children
Black path length to leaves same for each
node



07-24: Deleting Nodes

Deleting black node

If the child of the deleted node is red ... (show
example on board)



07-25: Deleting Nodes

Deleting black node

If the child of the deleted node is black
Make the child “doubly black”
Push “extra blackness” up the tree until it can
be removed by a rotation



07-26: Deleting Nodes

X is “doubly black” node, X is a left child

Case 4:
X’s sibling W is black, and W’s right child is
red
Can remove “double-blackness” of X with a
single rotation



07-27: Deleting Nodes

B

D

βα

A

C E

δγ ζε

Doubly

Black



07-28: Deleting Nodes
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07-29: Deleting Nodes
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07-30: Deleting Nodes
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07-31: Deleting Nodes

X is “doubly black” node, X is a left child

Case 3:
X’s sibling W is black, and W’s left child is
red, and right child is black
Single rotation to get to previous case



07-32: Deleting Nodes
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07-33: Deleting Nodes
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07-34: Deleting Nodes
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07-35: Deleting Nodes
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07-36: Deleting Nodes

X is “doubly black” node, X is a left child

Case 2:
X’s sibling W is black, and both of W’s
children are black
Push “Blackness” of X and W to parent



07-37: Deleting Nodes
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07-38: Deleting Nodes
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07-39: Deleting Nodes
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07-40: Deleting Nodes
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07-41: Deleting Nodes

X is “doubly black” node, X is a left child

Case 2:
X’s sibling W is Red
Do a rotation, to make W black. Then one of
the other cases will apply.



07-42: Deleting Nodes
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07-43: Deleting Nodes
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07-44: Deleting Nodes

Need to include symmetric cases

In all of the previous examples, swap left/right

(Go over at least one example)
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