
CS673-2016F-07 Red/Black Trees 1

07-0: Binary Search Trees

• Binary Trees

• For each node n, (value stored at node n) > (value stored in left subtree)

• For each node n, (value stored at node n) < (value stored in right subtree)

07-1: Example Binary Search Trees

D

C

B

A

D

B F

E GA c

A

B

D

D

07-2: Example Binary Search Trees

• Examples:

• Finding an element

• Inserting an element

• Deleting an element

07-3: Running Times

• Best-Case upper limit on the time for insert/delete/find of an element for a BST with n elements?

• Worst-Case upper limit on the time for insert/delete/find for a BST with n elements?

• Expected upper limit on the time for insert/delete/find for a BST with n elements?

• What would we mean by “expected” in this instance?

07-4: Running Times

• Best-Case upper limit on the time for insert/delete/find of an element for a BST with n elements?

• O(lg n), if the tree is balanced

• Worst-Case upper limit on the time for insert/delete/find for a BST with n elements?

• O(n), if the tree is a list

• Expected upper limit on the time for insert/delete/find for a BST with n elements?



CS673-2016F-07 Red/Black Trees 2

• O(lg n), if elements are inserted in random order

07-5: Balanced BSTs

• We can guarantee O(lg n) running time for insert/find/delete if we can guarantee the tree is balanced

• Several methods for guaranteeing a balanced tree

• AVL trees & Red-Black trees are the most common

• We’ll look at Red-Black Trees

07-6: Red-Black Trees

• Red-Black Trees as Binary Search trees, with “Null Leaves”

• Examples of BSTs with “Null Leaves”

• (Null leaves are mostly a notational convenience)

07-7: Red-Black Trees

• Red-Black Trees are Binary Search trees, with “Null Leaves”, and the following properties:

• Every Node is either Red or Black

• (Root is Black) <Not strictly required>

• Each null “leaf” is Black

• If a node is red, both children are black

• For each node, all paths from the node to descendant leaves contain the same number of black nodes

07-8: Red-Black Trees

8

3 9

2 5

4nl nl nl

nl nl

nl nl

07-9: Red-Black Trees

8

3 9

2 5

4



CS673-2016F-07 Red/Black Trees 3

• Example Red-Black tree (“Null Leaves” left out for clarity)

07-10: Red-Black Trees

• In a Red-Black tree, what is the greatest possible difference in the length of the path from the root to two different

leaves?

• What is the largest height of a Red-Black tree that contains n elements?

07-11: Red-Black Trees

• Let bh(X) be the ”Black Height” of a node – the number of black nodes on a path from that node to a leaf (not

including the node itself)

• The subtree rooted at any node X has at least 2bh(X)
− 1 internal (non-leaf) nodes

• Proof by induction (on board)

07-12: Tree Rotations

Y

X C

A B

Y

X

C

A

B

Right Rotate

Left Rotate

07-13: Tree Insertions

• Always insert red nodes

• Which property would be violated by inserting a red node?

07-14: Tree Insertions

• Always insert red nodes

• Which property would be violated by inserting a red node?

• Could have a red node with a red child

• Fix using tree rotations

07-15: Tree Insertions

• To fix a red node with red child:

• Case 1: Uncle is red

• Case 2: Uncle is black, Inserted node is right child of parent, and parent is a left child of Grandparent (or

node is left child, parent is right child)

• Case 3: Uncle is black, Node is left child of parent, parent is left child of Grandparent (or node is righ

child, parent is right child)

07-16: Case 1



CS673-2016F-07 Red/Black Trees 4

• Red Uncle

D

C

A

Bα

β γ

δ ε

07-17: Case 1

• Red Uncle

D

C

A

Bα

β γ

δ ε

07-18: Case 2

• Black Uncle / parent child different handedness

C

A

Bα

β γ

δ

07-19: Case 3

• Black Uncle / parent child same handedness



CS673-2016F-07 Red/Black Trees 5

C

B

β

γ

δ

α

A

07-20: Case 3

• Black Uncle / parent child same handedness

B

C

β γ δα

A

07-21: Deleting nodes

• Deleting nodes

• Delete nodes just like in standard BST

• Which properties could be violated by deleting a red node?

• Each node red or black

• Black Root

• Each red node has 2 black children

• Black path length to leaves same for each node

07-22: Deleting nodes

• Deleting nodes

• Delete nodes just like in standard BST

• Which properties could be violated by deleting a red node?

• None!

07-23: Deleting Nodes

• Deleting nodes



CS673-2016F-07 Red/Black Trees 6

• Delete nodes just like in standard BST

• Which properties could be violated by deleting a black node?

• Each node red or black

• Black Root

• Each red node has 2 black children

• Black path length to leaves same for each node

07-24: Deleting Nodes

• Deleting black node

• If the child of the deleted node is red ... (show example on board)

07-25: Deleting Nodes

• Deleting black node

• If the child of the deleted node is black

• Make the child “doubly black”

• Push “extra blackness” up the tree until it can be removed by a rotation

07-26: Deleting Nodes

• X is “doubly black” node, X is a left child

• Case 4:

• X’s sibling W is black, and W’s right child is red

• Can remove “double-blackness” of X with a single rotation

07-27: Deleting Nodes

B

D

βα

A

C E

δγ ζε

Doubly

Black

07-28: Deleting Nodes



CS673-2016F-07 Red/Black Trees 7

D

B

ζε

E

A C

βα δγ
07-29: Deleting Nodes

B

D

βα

A

C E

δγ ζε

Doubly

Black

07-30: Deleting Nodes



CS673-2016F-07 Red/Black Trees 8

D

B

ζε

E

A C

βα δγ
07-31: Deleting Nodes

• X is “doubly black” node, X is a left child

• Case 3:

• X’s sibling W is black, and W’s left child is red, and right child is black

• Single rotation to get to previous case

07-32: Deleting Nodes

B

D

βα

A

C E

δγ ζε

Doubly

Black

07-33: Deleting Nodes



CS673-2016F-07 Red/Black Trees 9

B

C

βα

A

D
γ

δ

Doubly

Black

E

ζε
07-34: Deleting Nodes

B

D

βα

A

C E

δγ ζε

Doubly

Black

07-35: Deleting Nodes



CS673-2016F-07 Red/Black Trees 10

B

C

βα

A

D
γ

δ

Doubly

Black

E

ζε
07-36: Deleting Nodes

• X is “doubly black” node, X is a left child

• Case 2:

• X’s sibling W is black, and both of W’s children are black

• Push “Blackness” of X and W to parent

07-37: Deleting Nodes

B

D

βα

A

C E

δγ ζε

Doubly

Black

07-38: Deleting Nodes



CS673-2016F-07 Red/Black Trees 11

B

D

βα

A

C E

δγ ζε
07-39: Deleting Nodes

B

D

βα

A

C E

δγ ζε

Doubly

Black

07-40: Deleting Nodes



CS673-2016F-07 Red/Black Trees 12

B

D

βα

A

C E

δγ ζε

Doubly

Black

07-41: Deleting Nodes

• X is “doubly black” node, X is a left child

• Case 2:

• X’s sibling W is Red

• Do a rotation, to make W black. Then one of the other cases will apply.

07-42: Deleting Nodes

B

D

βα

A

C E

δγ ζε

Doubly

Black

07-43: Deleting Nodes



CS673-2016F-07 Red/Black Trees 13

D

E

βα

B

A C

δγ

ζε

Doubly

Black

07-44: Deleting Nodes

• Need to include symmetric cases

• In all of the previous examples, swap left/right

• (Go over at least one example)


