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09-0: Recursive Solutions

Divide a problem into smaller subproblems

Recursively solve subproblems

Combine solutions of subproblems to get solution
to original problem

Some Examples:

Mergesort

Quicksort

Selection



09-1: Recursive Solutions

Occasionally, straightforward recursive solution
takes too much time

Solving the same subproblems over and over
again

Canonical example: Fibonacci Numbers

F (0) = 1

F (1) = 1

F (n) = F (n− 1) + F (n− 2)



09-2: Fibonacci

fib(n)
if (n < 2)

return 1
return fib(n-1) + fib(n-2)

How much time does this take?

Tight bound is a little ugly, but can we get loose
upper/lower bounds?

Polynomial, quadratic, exponential?



09-3: Fibonacci

fib(n)

fib(n-1) fib(n-2)

fib(n-2) fib(n-3) fib(n-3) fib(n-4)

fib(n-3) fib(n-4) fib(n-4) fib (n-5) fib(n-4) fib(n-5) fib(n-5) fib(n-6)



09-4: Fibonacci

n n/2

How many leaves are in this tree?



09-5: Fibonacci

n n/2

How many leaves are in this tree?

2
n

2 < # of leaves < 2n



09-6: Fibonacci

Straightforward implementation requires
exponential time

How many different subproblems are there, for
finding fib(n) ?



09-7: Fibonacci

Straightforward implementation requires
exponential time

How many different subproblems are there, for
finding fib(n) ?

(n - 1)

Takes so much time because we are recalculating
solutions subproblems over and over and over
again.

What if we stored solutions to subproblems in a
table, and only recalculated if the values were not
in the table?



09-8: Fibonacci

. . .

F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7)



09-9: Fibonacci

1 1 . . .

F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7)

First, fill in the “base cases” of the recursion



09-10: Fibonacci

1 1 2 3 . . . . . .

F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7)

First, fill in the “base cases” of the recursion

Next, fill in the rest of the table

Pick the order to fill the table entries in carefully

Make sure that answers to subproblems that
you need are already in the table



09-11: Fibonacci

Fibonacci(n)
T[0] = 1
T[1] = 1
for i = 2 to n do

T[i] = T[i-1] + T[i-2]
return T[n]



09-12: Fibonacci

Time required to calculate fib(n) using this method?

Space required to calculate fib(n) using this
method?



09-13: Fibonacci

Time required to calculate fib(n) using this method?

Θ(n)

Space required to calculate fib(n) using this
method?

Θ(n)

Can we do better?



09-14: Fibonacci

Time required to calculate fib(n) using this method?

Θ(n)

Space required to calculate fib(n) using this
method?

Θ(n)

Can we do better?

Only need to store last two numbers, not the
entire table



09-15: Fibonacci

fib(n)
prev = 1
prev_prev = 1
for i = 2 to n do

prev = prev + prev_prev
prev_prev = prev - prev_prev

return prev



09-16: Dynamic Programming

Simple, recursive solution to a problem

Straightforward implementation of recursion leads
to exponential behavior, because of repeated
subproblems

Create a table of solutions to subproblems

Fill in the table, in an order that guarantees that
each time you need to fill in a square, the values of
the required subproblems have already been filled
in



09-17: Winning a Series

Two teams, A and B

A has a probability of p of winning any one
game

B has a probability q = 1− p of winning any
game

A need to win i more games to win the series

B needs to win j more games to win the series

What is the probability that A will win the series?



09-18: Winning a Series

P (i, j) = Probability that team A will win the series,
given that A needs i more wins, and j needs j
more wins

P (0, k) = 1, for all k > 0

P (k, 0) = 0 for all k > 0

P (i, j) = ?



09-19: Winning a Series

P (i, j) = Probability that team A will win the series,
given that A needs i more wins, and j needs j
more wins

P (0, k) = 1, for all k > 0

P (k, 0) = 0 for all k > 0

P (i, j) = p ∗ P (i− 1, j) + q ∗ P (i, j − 1)



09-20: Winning a Series

AWinProbability(i,j)
if (i=0)

return 1
if (j=0)

return 0
return p*AWinProbability(i-1,j) +

q*AWinProbability(i,j-1)

Running time is exponential (why?)

How many unique subproblems are there?



09-21: Winning a Series

P(0,1) P(0,2) P(0,3) P(0,4) . . . P(0,n)

P(1,0) P(1,1) P(1,2) P(1,3) P(1,4) . . . P(1,n)

P(2,0) P(2,1) P(2,2) P(2,3) P(2,4) . . . P(2,n)
...

...
...

...
...

. . .
...

P(n,0) P(n,1) P(n,2) P(n,3) P(n,4) . . . P(n,n)

Total subproblems = n2, assuming we start with
each team needing to win n games



09-22: Winning a Series

Start with a table with the “base cases” filled in:

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

1 1 1 1 1 1 1

In which order should we fill the rest of the table
elements?



09-23: Winning a Series

Start with a table with the “base cases” filled in:

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

1 1 1 1 1 1 1

Fill in the rest of the table elements in this order



09-24: Winning a Series

for i=0 to n do
T[0,i] = 1
T[i,0] = 0

for i = 1 to n do
for j = 1 to n do

T[i,j] = p*T[i-1,j] + q*T[i,j-1]

We can read the final answer off the table



09-25: Assembly Line Scheduling

a
1,1

a
1,2

a
1,3

a
1,4

a
1,5

a
2,1

a
2,2

a
2,3

a
2,4

a
2,5

e
1

e
2

x
1

x
2

Two different assembly lines

Time to build a car on line 1: e1 +
∑n

i=1
a1,i + x1

Time to build a car on line 2: e2 +
∑n

i=1
a2,i + x2



09-26: Assembly Line Scheduling

a
1,1

a
1,2

a
1,3

a
1,4

a
1,5

a
2,1

a
2,2

a
2,3

a
2,4

a
2,5

e
1

e
2

x
1

x
2

t
1,2

t
1,3

t
1,4

t
1,5

t
1,2

t
2,3

t
2,4

t
2,5

Rush orders can use both lines

Time penalty for switching



09-27: Assembly Line Scheduling

a
1,1

a
1,2

a
1,3

a
1,4

a
1,5

a
2,1

a
2,2

a
2,3

a
2,4

a
2,5

e
1

e
2

x
1

x
2

t
1,2

t
1,3

t
1,4

t
1,5

t
1,2

t
2,3

t
2,4

t
2,5

Rush orders can use both lines

Time penalty for switching

e1 + a1,1 + a1,2 + t1,3 + a2,3 + t2,4 + aa,4 + a1,5 + x1



09-28: Assembly Line Scheduling

How fast can we build a single car?

Try all possible paths through the assembly line

Exponential in the number of stations

Many repeated subproblems



09-29: Assembly Line Scheduling

First step:

Find a “brute force” recursive solution, which
examines all possible paths.

Give a simple recursive function that calculates
the fastest path through the assembly line

What is the base case?
How can we make the problem smaller?
HINT: You can use two mutually recursive
functions if you want to

Second step

Use a table to avoid recalculating values



09-30: Assembly Line Scheduling

Two assembly lines, n stations in each line

f1(k) = fastest time to complete the car, if we start
at station k of assembly line 1.

f2(k) = fastest time to complete the car, if we start
at station k of assembly line 2.

Base cases:

NOTE: The text defines fi(k) = fastest time to get to
station k on line i. The switch in the lecture notes is
intentional, to show two ways of solving the problem.



09-31: Assembly Line Scheduling

Two assembly lines, n stations in each line

f1(k) = fastest time to complete the car, if we start
at station k of assembly line 1.

f2(k) = fastest time to complete the car, if we start
at station k of assembly line 2.

Base cases:

f1(n) = a1,n + x1

f2(n) = a2,n + x2



09-32: Assembly Line Scheduling

Two assembly lines, n stations in each line

f1(k) = fastest time to complete the car, if we start
at station k of assembly line 1.

f2(k) = fastest time to complete the car, if we start
at station k of assembly line 2.

Recursive cases:

f1(k) = a1,k +min(f1(k + 1), f2(k + 1) + t1,k+1)

f2(k) = a2,k +min(f2(k + 1), f1(k + 1) + t2,k+1)



09-33: Assembly Line Scheduling

We can now define a table:

T [i, j] = fi(j)

f   (1) f   (2) f   (3) f   (n-1) f   (n)
1 1 1 1 1

... f   (n-2)
1

...

...

f   (1) f   (2) f   (3) f   (n-1) f   (n)
2 2 2 2 2

... f   (n-2)
2



09-34: Assembly Line Scheduling

T [1, n] = a1,n + xn, T [2, n] = a2,n + xn

T [1, j] = ai,j +min(T [1, j + 1], t1,j+1 + T [2, j + 1])

T [2, j] = ai,j +min(T [2, j + 1], t2,j+1 + T [1, j + 1])

f   (1) f   (2) f   (3) f   (n-1) f   (n)
1 1 1 1 1

... f   (n-2)
1

...

...

f   (1) f   (2) f   (3) f   (n-1) f   (n)
2 2 2 2 2

... f   (n-2)
2



09-35: Assembly Line Scheduling

Once we have the table T , what is the fastest we
can get a car through?



09-36: Assembly Line Scheduling

Once we have the table T , what is the fastest we
can get a car through?

min(T [1, 1] + e1, T [2, 1] + e2)

How can we modify the algorithm to calculate the
optimal path as well?



09-37: Assembly Line Scheduling

Once we have the table T , what is the fastest we
can get a car through?

min(T [1, 1] + e1, T [2, 1] + e2)

How can we modify the algorithm to calculate the
optimal path as well?

P [1, k] =

{

1 if T [1, k + 1] ≤ t1,k+1 + T [2, k + 1]

2 otherwise

P [2, k] =

{

2 if T [2, k + 1] ≤ t2,k+1 + T [1, k + 1]

1 otherwise



09-38: Assembly Line Scheduling

4 2 4 3 6

3 5 2 8 2

4

3

2

3

2 2 2 2

1 1 3 1

T

1 2 3 4 5

1

2

P

1 2 3 4 5

1

2



09-39: Assembly Line Scheduling

4 2 4 3 6

3 5 2 8 2

4

3

2

3

2 2 2 2

1 1 3 1

T

1 2 3 4 5

1 20 16 14 10 8

2 20 20 15 13 5

P

1 2 3 4 5

1 1 1 1 2 -

2 (1,2) (1,2) 2 2 -



09-40: Assembly Line Scheduling

FastestBuild(a, t, e, x, n )

T [1, n]← a1, n+ x1

T [2, n]← a1, n+ x2

for j ← n− 1 to 1 do

if T [1, j + 1] ≤ T [2, j + 1] + t1,j+1 then

T [1, j] = T [1, j + 1] + a1,j

P [1, j] = 1

else

T [1, j] = T [2, j + 1] + t1,j+1 + a1,j

P [1, j] = 2

if T [2, j + 1] ≤ T [1, j + 1] + t2,j+1 then

T [2, j] = T [2, j + 1] + a2,j

P [2, j] = 2

else

T [2, j] = T [1, j + 1] + t2,j+1 + a2,j

P [2, j] = 1

if T [1, 1] + e1 > T [2, 1] + e2 then

cost = T [1, 1] + e1

else

cost = T [2, 1] + e2



09-41: Making Change

Problem:

Coins: 1, 5, 10, 25, 50

Smallest number of coins that sum to an
amount X?

How can we solve it?



09-42: Making Change

Problem:

Coins: 1, 4, 6

Smallest number of coins that sum to an
amount X?

Does the same solution still work? Why not?



09-43: Making Change

Problem:

Coins: d1, d2, d3, . . ., dk
Can assume d1 = 1

Value X

Find smallest number of coins that sum to X

Solution:



09-44: Making Change

Problem:

Coins: d1, d2, d3, . . ., dk
Can assume d1 = 1

Value X

Find smallest number of coins that sum to X

Solution:

We can pick any coint to start with: d1, d2, . . .,
dk
We then have a smaller subproblem: Finding
change for the remainder after using the first
coin



09-45: Making Change

Problem:

Coins: d1, d2, d3, . . ., dk
Can assume d1 = 1

Value X

Find smallest number of coins that sum to X

Solution:

C[n] = smallest number of coins required for
amount n

What is the base case?

What is the recursive case?



09-46: Making Change

C[n] = smallest number of coins required for
amount n

Base Case:

C[0] = 0

Recursive Case:

C[n] = min
i,di<=n

(C[X − dk] + 1)



09-47: Making Change

0 1 2 3 4 5 6 7 8 . . . n

. . .

d1 = 1, d2 = 4, d3 = 6



09-48: Making Change

0 1 2 3 4 5 6 7 8 . . . n

0 1 2 3 1 2 1 2 2 . . .

d1 = 1, d2 = 4, d3 = 6



09-49: Making Change

C[0] = 0
for i = 1 to n do

if (i >= d[0])
C[i] = 1 + C[i - d[0]]

for j=1 to numdenominations - 1 do
if (d[j] >= i)

C[i] = min(C[i], C[i-d[j]] + 1)



09-50: Making Change

What’s the required space, if total = n and # of
different kinds of coins = m?

What’s the running time, if total = n and # of
different kinds of coins = m?



09-51: Making Change

What’s the required space, if total = n and # of
different kinds of coins = m?

Θ(n)

What’s the running time, if total = n and # of
different kinds of coins = m?

O(m ∗ n) (each square can take up to time

O(m) to calculate)



09-52: Making Change

Given the table, can we determine the optimal way
to make change for a given value X? How?

0 1 2 3 4 5 6 7 8 . . . n

0 1 2 3 1 2 1 2 2 . . .

d1 = 1, d2 = 4, d3 = 6



09-53: Matrix Multiplication

Quick review (on board)

Matrix A is i× j

Matrix B is j × k

# of scalar multiplications in A ∗B?



09-54: Matrix Multiplication

Quick review (on board)

Matrix A is i× j

Matrix B is j × k

# of scalar multiplications in A ∗B?
i ∗ j ∗ k



09-55: Matrix Chain Multiplication

Multiply a chain of matrices together

A ∗B ∗ C ∗D ∗ E ∗ F

Matrix Multiplication is associative

(A ∗B) ∗ C = A ∗ (B ∗ C)

(A ∗B) ∗ (C ∗D) = A ∗ (B ∗ (C ∗D)) =
((A ∗B) ∗ C) ∗D = A ∗ ((B ∗ C) ∗D) =
(A ∗ (B ∗ C)) ∗D



09-56: Matrix Chain Multiplication

Order Matters!

A : (100× 100), B : (100× 100),
C : (100× 100), D : (100× 1)

((A ∗B) ∗ C) ∗D Scalar multiplications:

A ∗ (B ∗ (C ∗D)) Scalar multiplications:



09-57: Matrix Chain Multiplication

Order Matters!

A : (100× 100), B : (100× 100),
C : (100× 100), D : (100× 1)

((A ∗B) ∗ C) ∗D Scalar multiplications:
2,010,000

A ∗ (B ∗ (C ∗D)) Scalar multiplications: 30,000



09-58: Matrix Chain Multiplication

Matrices A1, A2, A3 . . . An

Matrix Ai has dimensions pi−1 × pi

Example:

A1 : 5× 7, A2 : 7× 9, A3 : 9× 2, A4 : 2× 2

p0 = 5, p1 = 7, p2 = 9, p3 = 2, p4 = 2

How can we break A1 ∗ A2 ∗ A3 ∗ . . . ∗ An into
smaller subproblems?

Hint: Consider the last multiplication



09-59: Matrix Chain Multiplication

M [i, j] = smallest # of scalar multiplications
required to multiply Ai ∗ . . . ∗ Aj

Breaking M [1, n] into subproblems:

Consider last multiplication

(use whiteboard)



09-60: Matrix Chain Multiplication

M [i, j] = smallest # of scalar multiplications
required to multiply Ai ∗ . . . ∗ Aj

Breaking M [1, n] into subproblems:

Consider last multiplication:

(A1 ∗ A2 ∗ . . . ∗ Ak) ∗ (Ak+1 ∗ . . . ∗ An)

M [1, n] = M [1, k] +M [k + 1, n] + p0pkpn
In general,

M [i, j] = M [i, k] +M [k + 1, j] + pi−1pkpj
What should we choose for k? which value
between i and j − 1 should we pick?



09-61: Matrix Chain Multiplication

Recursive case:

M [i, j] = min
i≤k<j

(M [i, k] +M [k+1, j] + pi−1 ∗ pk ∗ pj

What is the base case?



09-62: Matrix Chain Multiplication

Recursive case:

M [i, j] = min
i≤k<j

(M [i, k] +M [k+1, j] + pi−1 ∗ pk ∗ pj

What is the base case?

M [i, i] = 0

for all i



09-63: Matrix Chain Multiplication

M [i, j] = min
i≤k<j

(M [i, k] +M [k + 1, j] + pi−1 ∗ pk ∗ pj

In what order should we fill in the table? What to
we need to compute M [i, j]?

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

8

0

0

0

0

0

0

0

0



09-64: Matrix Chain Multiplication

M [i, j] = min
i≤k<j

(M [i, k] +M [k + 1, j] + pi−1 ∗ pk ∗ pj

In what order should we fill in the table? What to
we need to compute M [i, j]?

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

8

0

0

0

0

0

0

0

0



09-65: Matrix Chain Multiplication

M [i, j] = min
i≤k<j

(M [i, k] +M [k + 1, j] + pi−1 ∗ pk ∗ pj

What about the lower-left quadrant of the table?

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

8

0

0

0

0

0

0

0

0



09-66: Matrix Chain Multiplication

M [i, j] = min
i≤k<j

(M [i, k] +M [k + 1, j] + pi−1 ∗ pk ∗ pj

What about the lower-left quadrant of the table?

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

8

0

0

0

0

0

0

0

0

Not Defined



09-67: Matrix Chain Multiplication

Matrix-Chain-Order(p)
n← # of matrices
for i← 1 to n do

M [i, i]← 0
for l ← 2 to n do

for i←1 to n− l + 1
j ← i+ l − 1
M [i, j]←∞
for k ← i to j − 1 do

q ←M [i, k] +M [k + 1, j] + pi−1 ∗ pk ∗ pj
if q < M [i, j] then

M [i, j] = q
S[i, j] = k



09-68: Dynamic Programming

When to use Dynamic Programming

Optimal Program Substructure
Optimal solution needs to be constructed
from optimal solutions to subproblems
Often means that subproblems are
independent of each other



09-69: Dynamic Programming

Optimal Program Substructure

Example: Shortest path in an undirected graph
let p = x1 → x2 → . . .→ xk → . . .→ xn be a
shortest path from x1 to xn.
The subpath x1 → xk of p is a shortest path
from x1 to xk

The subpath xk → xn of p is a shortest path
from xk to xn

How would we prove this? (on board)



09-70: Dynamic Programming

Optimal Program Substructure

Example: Longest simple path (path without
cycles) in an undirected graph

let p = x1 → x2 → . . . xk → . . .→ xn be a
longest simple path from x1 to xn.
Is the subpath x1 → xk of p is the longest
simple path from x1 to xk?
Is the subpath xk → xn of p is the longest
simple path from xk to xn?



09-71: Dynamic Programming

a

b

c

d

Longest simple path from b→ c?

Longest simple path from a→ c or d→ c?



09-72: Dynamic Programming

a

b

c

d

a

b

c

d

Longest Path from b->c Longest Path from d->c

Why isn’t the optimal solution composed of optimal
solutions to subproblems?



09-73: Dynamic Programming

a

b

c

d

a

b

c

d

Longest Path from b->c Longest Path from d->c

Why isn’t the optimal solution composed of optimal
solutions to subproblems?

Subproblems interfere with each other

Subproblems are not independent



09-74: Dynamic Programming

When to use Dynamic Programming

Optimal Program Substructure

Repeated Subproblems
Solving the exact same problem more than
once
Fibonacci, assembly line, matrix chain
multiplication



09-75: Dynamic Programming

MS[1,16]

MS[1,8] MS[9,16]

MS[1,4] MS[5,8] MS[9,12] MS[13,16]

MS[1,2] MS[3,4] MS[5,6] MS[7,8] MS[9,10] MS[11,12] MS[13,14] MS[15,16]

Mergesort

No repeated subproblems

Dynamic Programming not good for “Divide &
Conquer” algorithms



09-76: Sequence/Subsequence

Sequence: Ordered list of elements

Subsequence: Sequence with some elements
removed

Example: < A,B,B,C,A,B >

< A,C,B >

< A,B,A >

< A,C,A,B >



09-77: LCS

Longest Common Subsequence

< A,B,C,B,D,A,B >, < B,D,C,A,B,A >

< B,C,A >. Common subsequence, not
longest

< B,C,B,A > Longest Common
subsequence

Is it unique?



09-78: LCS

< A,B,C,B,D,A,B >, < B,D,C,A,B,A >

< B,C,A >. Common subsequence, not
longest

< B,C,B,A > Longest Common
subsequence
< B,C,A,B > also a LCS
Also consider < A,A,A,B,B,B >,
< B,B,B,A,A,A >



09-79: LCS

Finding a LCS:

X =< x1, x2, x3, . . . , xm >

Y =< y1, y2, y3, . . . , yn >

xm = yn

What can we say about Z =< z1, . . . , zk > the
LCS of X and Y ?



09-80: LCS

Finding a LCS:

X =< x1, x2, x3, . . . , xm >

Y =< y1, y2, y3, . . . , yn >

xm = yn

What can we say about Z =< z1, . . . , zk > the
LCS of X and Y ?

zk = xm = yn
< z1, . . . zk−1 > is a LCS of < x1, . . . , xm−1 >
and < y1, . . . , yn−1 >



09-81: LCS

Finding a LCS:

X =< x1, x2, x3, . . . , xm >

Y =< y1, y2, y3, . . . , yn >

xm 6= yn

What can we say about Z =< z1, . . . , zk > the
LCS of X and Y ?



09-82: LCS

Finding a LCS:

X =< x1, x2, x3, . . . , xm >

Y =< y1, y2, y3, . . . , yn >

xm 6= yn

What can we say about Z =< z1, . . . , zk > the
LCS of X and Y ?

Z is a subsequence of < x1, . . . , xm−1 >,
< y1, . . . , yn > or

Z is a subsequence of < x1, . . . , xm >,
< y1, . . . , yn−1 >



09-83: LCS

How can we set up a recursive function that
calculates the length of a LCS of two sequences?

If two sequences end in the same character,
the LCS contains that character

If two sequences have a different last character,
the length of the LCS is either the length of the
LCS we get by dropping the last character from
the first sequence, or the last character from
the second sequence



09-84: LCS

C[i, j] = length of LCS of first i elements of X, and
first j elements of Y

What is the base case?

What is the recursive case?



09-85: LCS

C[i, j] = length of LCS of first i elements of X, and
first j elements of Y

Base Case:
C[i,0] = C[0,j] = 0

Recursive Case: C[i, j]
If xi = yj, C[i, j] = 1 + C[i− 1, j − 1]
If xi 6= yj,

C[i, j] = max(C[i− 1, j], C[i, j − 1])



09-86: LCS

j 0 1 2 3 4 5 6

i yi B D C A B A

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B



09-87: LCS

j 0 1 2 3 4 5 6

i yi B D C A B A

0 xi 0 0 O 0 0 0

1 A 0 0 0 0 1 1 1

2 B 0 1 1 1 1 2 2

3 C 0 1 1 2 2 2 2

4 B 0 1 1 2 2 3 3

5 D 0 1 2 2 2 3 3

6 A 0 1 2 2 3 3 4

7 B 0 1 2 2 3 4 4

How can we extract the sequence from this table?



09-88: LCS

j 0 1 2 3 4 5 6

i yi B D C A B A

0 xi 0 0 O 0 0 0

1 A 0 0 0 0 1 1 1

2 B 0 1 1 1 1 2 2

3 C 0 1 1 2 2 2 2

4 B 0 1 1 2 2 3 3

5 D 0 1 2 2 2 3 3

6 A 0 1 2 2 3 3 4

7 B 0 1 2 2 3 4 4

Can we save space if we just want the length of the longest sequence?



09-89: LCS

LCS(X,Y )
m← length(X)
n← length(Y )
for i← 1 to m do

C[i, 0]← 0
for j ← 1 to n do

C[j, 0]← 0
for i← 1 to m do

for j ← 1 to n do
if Xi = Yj

C[i, j] = 1 + C[i− 1, j − 1]
else

C[i, j] = max(C[i− 1, j], C[i, j − 1])



09-90: Memoization

Sometimes calculating the order to fill the table can
be difficult

Sometimes you do not need to calculate the entire
table to get the answer you need

Solution: “Memoize”recursive solution

Set table entries to∞

At beginning of each recursive call, check to
see if result is in table. If so, stop and return
that result

When a value is returned, store it in the table as
well



09-91: Memoization

Matrix-Chain-Order(p)

n← # of matrices

for i← 1 to n do

for j ← 1 to n do

M [i, j]←∞

return MMChain(1, n)

MMChain(i, j)

if M [i, j] 6=∞

return M [i, j]

if i = j

M [i, j] = 0

return 0

for k← i to j − 1 do

if MMChain(i, j) < MMChain(i, k) + MMChain(k+ 1, j) + pi−1 ∗ pk ∗ pj

M [i.j]←M [i, k] +M [k + 1, j] + pi−1i ∗ pk ∗ pj

S[i, j]← k

return M [i, j]



09-92: Memoization

Use a hash table to implement memoization as well

Works for arbitrary function parameters

f(i,j,k)
create a hash key out of i,j,k
if key is in the hash table,

return associated value
<calculate f value>

insert f value into the hash table
return f value
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