
CS673-2016F-FR Final Review 1

FR-0: Big-O Notation

O(g(n)) = {f(n) | ∃c, n0, s.t.

f(n) ≤ cg(n) whenever n > n0}

f(n) ∈ O(g(n)) means:

• f is bound from above by g

• f grows no faster than g

• g is an upper bound on f

FR-1: Big-Ω Notation

Ω(g(n)) = {f(n) | ∃c, n0, s.t.

cf(n) ≥ g(n) whenever n > n0}

f(n) ∈ Ω(g(n)) means:

• f is bound from below by g

• g grows no faster than f

• g is a lower bound on f

FR-2: Big-Θ Notation

Θ(g(n)) = {f(n) | ∃c1, c2, n0, s.t.

c1g(n) ≤ f(n) ≤ c2g(n)

whenever n > n0}

Alternately,

Θ(g(n)) = O(g(n))
⋂

Ω(g(n))

FR-3: Big-Θ Notation

Show:

3n2 + 4n ∈ Θ(n2)

FR-4: Big-Θ Notation

Show:

3n2 + 4n ∈ Θ(n2)

c1 ∗ n2 ≤ 3n2 + 4n ≤ c2 ∗ n2

True, as long as c1 ≤ 3 + 4/n, c+ 2 ≥ 3 + 4/n

CS673-2016F-FR Final Review 2

(since n > n0, we can assume 4/n ≤ 1)

FR-5: little-o

o(g(n)) = {f(n) | ∀c > 0, ∃n0 > 0 s.t.

0 ≤ f(n) < cg(n) whenever n ≥ n0}

f(n) ∈ o(g(n))⇒ lim
n→∞

f(n)

g(n)
= 0

FR-6: little-ω

ω(g(n)) = {f(n) | ∀c > 0, ∃n0 > 0 s.t.

0 ≤ cg(n) < f(n) whenever n ≥ n0}

f(n) ∈ ω(g(n))⇒ lim
n→∞

f(n)

g(n)
=∞

FR-7: Summations

• We will assume you’ve seen inductive proof that
∑n

i=1 i =
n(n+1)

2 (check Appendix 1 in the text otherwise!)

• Can use induction to prove bounds as well. Show:

n
∑

i=1

3i + 2i = O(3n)

FR-8: Summations
n
∑

i=1

3i + 2i = O(3n)

• Base Case:

•
1
∑

i=1

3i + 2i = 3 + 2 ≤ c ∗ (31) as long as c ≥ 5/3

FR-9: Summations
n
∑

i=1

3i + 2i = O(3n)

• Recursive Case:

n+1
∑

i=1

3i + 2i = (

n
∑

i=1

(3i + 2i) + 3n+1 + 2n+1

≤ c3n + 3n+1 + 2n+1

≤ c3n + 3n+1 + 3n+1

= c3n + 2 ∗ 3n+1

= c/3 ∗ 3n+1 + 2 ∗ 3n+1

= (1/3 + 2/c)c3n+1

≤ c3n+1

CS673-2016F-FR Final Review 3

As long as (1/3 + 2/c) ≤ 1, or c ≥ 3
FR-10: Bounding Summations

n
∑

i=1

ai ≤ n ∗ amax

for instance:
n
∑

i=1

i ≤ n2 ∈ O(n2)

and

n
∑

i=1

ai ≥ n ∗ amin

for instance:
n
∑

i=1

i ≥ 1 ∗ n ∈ Ω(n)

(note that the bounds are not always tight!)

FR-11: Splitting Summations

We can sometimes get tighter bounds by splitting the summation:

n
∑

i=1

lg i =

⌊n/2⌋
∑

i=1

lg i+

n
∑

i=⌊n/2⌋+1

lg i

≥ n/2 ∗ lg 1 + n/2 ∗ lgn/2
= n/2(lgn− lg 2)

= n/2(lgn− 1)

∈ Ω(n lgn)

FR-12: Splitting Summations

We can split summations in more tricky ways, as well. Consider the harmonic series:

Hn =

n
∑

i=1

1

n

How could we split this to get a good upper bound?

HINT: Break sequence into pieces that are all bounded by the same amount – if the series gets smaller, size of each

piece should increase.

FR-13: Splitting Summations

CS673-2016F-FR Final Review 4

Hn =
n
∑

i=1

1

i

≤
⌊lgn⌋
∑

i=0

2i−1
∑

j=0

1

2i + j

≤
⌊lgn⌋
∑

i=0

2i−1
∑

j=0

1

2i

≤
⌊lgn⌋
∑

i=0

1

≤ lgn+ 1

FR-14: Recurrence Relations

MergeSort(A,low,high) {

if (low < high + 1) {

mid1 = floor ((low + high) / 3))

mid2 = floor (2(low + high) / 3))

MergeSort(A,low,mid1)

MergeSort(A,mid+1,mid2)

MergeSort(A,mid2+1,high)

Merge3(A,low,mid1,mid2,high)

}

}

FR-15: Recurrence Relations

MergeSort(A,low,high) {

if (low < high + 1) {

mid1 = floor ((low + high) / 3))

mid2 = floor (2(low + high) / 3))

MergeSort(A,low,mid1)

MergeSort(A,mid+1,mid2)

MergeSort(A,mid2+1,high)

Merge3(A,low,mid1,mid2,high)

}

}

T (0) = Θ(1)

T (1) = Θ(1)

T (2) = Θ(1)

T (n) = T
(⌈n

3

⌉)

+ 2 ∗ T
(⌊n

3

⌋)

+Θ(n)

FR-16: Recurrence Relations

• How do we solve recurrence relations?

• Substitution Method

• Guess a solution

CS673-2016F-FR Final Review 5

• Prove the guess is correct, using induction

T (1) = 1

T (n) = 3T
(n

3

)

+ n

FR-17: Substitution Method

• Inductive Case

T (n) = 3T
(n

3

)

+ n

≤ 3
(

c
n

3
lg

n

3

)

+ n

= cn lgn− cn lg 3 + n

≤ cn lgn

FR-18: Substitution Method

• Base Case

T (1) = 1

T (n) ≤ cn lgn

T (1) ≤ c ∗ 1 ∗ lg 1
T (1) ≤ c ∗ 1 ∗ 0 = 0

Whoops! If the base case doesn’t work the inductive proof is broken! What can we do?

FR-19: Substitution Method

• Fixing the base case

Note that we only care about n > n0, and for n ≥ 6, recurrence does not depend upon T (1) except through

T (2)−−T (5) and T (3)

T (2) ≤ 2 ∗ c ∗ lg 2
T (3) ≤ 3 ∗ c ∗ lg 3
T (4) ≤ 4 ∗ c ∗ lg 2
T (5) ≤ 5 ∗ c ∗ lg 3

(for sufficiently large c) FR-20: Substitution Method

• Sometimes, the math doesn’t work out in the substitution method:

CS673-2016F-FR Final Review 6

T (1) = 1

T (n) = 2 ∗ T
(n

2

)

+ 1

FR-21: Substitution Method Try T (n) ≤ cn:

T (n) = 2T
(n

2

)

+ 1

≤ c2
(n

2

)

+ 1

≤ cn+ 1

We did not get back T (n) ≤ cn – that extra +1 term means the proof is not valid. We need to get back exactly

what we started with (see invalid proof of
∑n

i=1 i ∈ O(n) for why this is true)

FR-22: Substitution Method Try T (n) ≤ cn− b:

T (n) = 2T
(n

2

)

+ 1

≤ 2 ∗
(

c
n

2
− b

)

+ 1

≤ cn− 2b+ 1

≤ cn− b

As long as b ≥ 1
FR-23: Recursion Trees

T (n) = 2T (n/2) + cn

FR-24: Recursion Trees

T (n) = T (n− 1) + cn

FR-25: Recursion Trees

T (n) = T (n/2) + c

FR-26: Recursion Trees

T(n) = 3T(n/4) + cn 2

FR-27: Recursion Trees

T(n) =

T(n/4) T(n/4) T(n/4)

 cn2 +

+ +

CS673-2016F-FR Final Review 7

FR-28: Recursion Trees

T(n) =

T(n/4) T(n/4) T(n/4)

 cn2 +

+ +

T(n/4) = 3T(n/16) + c(n/4)
2

FR-29: Recursion Trees

T(n) = cn2

2c(n/4) 2c(n/4) 2c(n/4)

T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16)T(n/16)

T(n/16) = T(n/32) + c(n/16)
2

FR-30: Recursion Trees

 cn2

2c(n/4) 2c(n/4) 2c(n/4)

2c(n/16) 2c(n/16)2c(n/16)2c(n/16) 2c(n/16) 2c(n/16) 2c(n/16) 2c(n/16) 2c(n/16)

... ...

...

...

...

...

1 1 1 1 1 1 1 1 1 1 1...1 1 1 1 1 1 1 1 1

FR-31: Recursion Trees

CS673-2016F-FR Final Review 8

 cn2

2c(n/4) 2c(n/4) 2c(n/4)

2c(n/16) 2c(n/16)2c(n/16)2c(n/16) 2c(n/16) 2c(n/16) 2c(n/16) 2c(n/16) 2c(n/16)

... ...

...

...

...

...

 cn2

(3/4) cn2

(3 /(4)) cn22

lo
g

 n

4

log 3
n 4

1 1 1 1 1 1 1 1 1 1 1...1 1 1 1 1 1 1 1 1

2

2

(3 /(4)) cn2ii

FR-32: Recursion Trees

T (n) =

log4 n
∑

i=0

(

3i

42i

)i

cn2 +
nlog4 3
∑

i=0

1

<

log4 n
∑

i=0

(

3

4

)i

cn2 + nlog4 3

<

∞
∑

i=0

(

3

4

)i

cn2 + nlog4 3

=
1

1− 3/4
cn2 + nlog4 3

= 4cn2 + nlog4 3

∈ O(n2)

(now prove bound using substitution method) FR-33: Recursion Trees

T(n) = T(n/3) + T(2n/3) + cn

FR-34: Recursion Trees

 cn

c(n/3) c(2n/3)

c(n/9)

... ...

...

...

...

 cn

<
=

 l
o
g

n

3
/2

T(n) = T(n/3) + T(2n/3) + cn

c(2n/9) c(2n/9) c(4n/9)

c(n/27) c(2n/27) c(2n/27) c(4n/27) c(2n/27) c(4n/27) c(4n/27) c(8n/27)

 cn

 cn

 cn

O(n lg n)

...

FR-35: Recursion Trees

• There is a small problem – this tree is actually irregular in shape!

FR-36: Recursion Trees

CS673-2016F-FR Final Review 9

T(n) = T(n/3) + T(2n/3) + cn

lo
g
 n
3
/2

lo
g

n

3

FR-37: Recursion Trees
T(n) = T(n/3) + T(2n/3) + cn

lo
g
 n
3

/2

lo
g

n

3

2
log n

n
log 2

3/23/2
= = ω(n lg n)

FR-38: Recursion Trees

• If we are only using recursion trees to create a guess (that we will later verify using substitution method), then

we can be a little sloppy.

• Show T (n) = T (n/3) + T (2n/3) + cn ∈ O(n lg n)

FR-39: Recursion Trees

• T (n) = T (n− 2) + n2

• T (n) = 4T (n/4) + n lgn

FR-40: Renaming Variables

CS673-2016F-FR Final Review 10

• Consider:

T (1) = 1

T (n) = 2T
(√

n
)

+ lgn

• The
√

is pretty ugly – how can we make it go away?

• Rename variables!

FR-41: Renaming Variables

T (1) = 1

T (n) = 2T
(√

n
)

+ lgn

Let m = lgn, (and so n = 2m)

T (2m) = 2T
(√

2m
)

+ lg 2m

= 2T
(

2m/2
)

+m

FR-42: Renaming Variables

T (2m) = 2T
(

2m/2
)

+m

Now let S(m) = T (2m)

S(m) = T (2m)

= 2T
(

2m/2
)

+m

= 2S
(m

2

)

+m

FR-43: Renaming Variables

S(m) = 2S
(m

2

)

+m

≤ cm lgm

So:

T (n) = T (2m)

= S(m)

≤ cm lgm

= c lgn lg lg n

CS673-2016F-FR Final Review 11

FR-44: Master Method

T (n) = aT (n/b) + f(n)

1. if f(n) ∈ O(nlogb a−ǫ) for some ǫ > 0, then T (n) ∈ Θ(nlogb a)

2. if f(n) ∈ Θ(nlogb a) then T (n) ∈ Θ(nlogb a ∗ lgn)

3. if f(n) ∈ Ω(nlogb a+ǫ) for some ǫ > 0, and if af(n/b) ≤ cf(n) for some c < 1 and large n, then T (n) ∈
Θ(f(n))

FR-45: Master Method

T (n) = 9T (n/3) + n

FR-46: Master Method

T (n) = 9T (n/3) + n

• a = 9, b = 3, f(n) = n

• nlogb a = nlog3 9 = n2

• n ∈ O(n2−ǫ)

T (n) = Θ(n2)
FR-47: Master Method

T (n) = T (2n/3) + 1

FR-48: Master Method

T (n) = T (2n/3) + 1

• a = 1, b = 3/2, f(n) = 1

• nlogb a = nlog3/2 1 = n0 = 1

• 1 ∈ O(1)

T (n) = Θ(1 ∗ lg n) = Θ(lgn)
FR-49: Master Method

T (n) = 3T (n/4) + n lg n

FR-50: Master Method

T (n) = 3T (n/4) + n lg n

• a = 3, b = 4, f(n) = n lgn

• nlogb a = nlog4 3 = n0.792

• n lgn ∈ Ω(n0.792+ǫ)

• 3(n/4) lg(n/4) ≤ c ∗ n lgn

CS673-2016F-FR Final Review 12

T (n) ∈ Θ(n lg n)
FR-51: Master Method

T (n) = 2T (n/2) + n lg n

FR-52: Master Method

T (n) = 2T (n/2) + n lg n

• a = 2, b = 2, f(n) = n lgn

• nlogb a = nlog2 2 = n1

Master method does not apply!

n1+ǫ grows faster than n lgn for any ǫ > 0
Logs grow incredibly slowly! lgn ∈ o(nǫ) for any ǫ > 0

FR-53: Probability Review

• Indicator variable associated with event A:

I{A} =
{

1 if A occurs
0 if A does not occur

• Example: Flip a coin: Y is a random variable representing the coin flip

XH = I{Y = H} =
{

1 if Y = H
0 otherwise

FR-54: Probability Review

• Expected value E[] of a random variable

• Value you “expect” a random variable to have

• Average (mean) value of the variable over many trials

• Does not have to equal the value of any particular trial

• Bus example(s)

FR-55: Probability Review

• Expected value E[] of a random variable

E[X] =
∑

all values x of X

x ∗ Pr{X = x}

• When we want the “average case” running time of an algorithm, we want the Expected Value of the running

time

CS673-2016F-FR Final Review 13

FR-56: Probability Review

XH = I{Y = H}

E[XH] = E[I{Y = H}]
= 1 ∗ Pr{Y = H}+ 0 ∗ Pr{Y = T }
= 1 ∗ 1/2 + 0 ∗ 1/2
= 1/2

FR-57: Probability Review

• Expected # of heads in n coin flips

• X = # of heads in n flips

• Xi = indicator variable: coin flip i is heads

FR-58: Probability Review

• Expected # of heads in n coin flips

• X = # of heads in n flips

• Xi = indicator variable: coin flip i is heads

E[X] = E

[

n
∑

i=1

Xi

]

=
n
∑

i=1

E[Xi]

=

n
∑

i=1

1

2
=

n

2

FR-59: Probability Review

• For any event A, indicator variable XA = I{A} E[XA] = Pr{A}

E[XA] = 1 ∗ Pr{A}+ 0 ∗ Pr{¬A}
= Pr{A}

FR-60: Hiring Problem

• Calculate the expected number of hirings

• X = # of candidates hired

• Xi = I{Candidate i is hired}
• X = X1 +X2 + . . .+Xn

CS673-2016F-FR Final Review 14

E[X] =

FR-61: Hiring Problem

• Calculate the expected number of hirings

• X = # of candidates hired

• Xi = I{Candidate i is hired}
• X = X1 +X2 + . . .+Xn

E[X] = E

[

n
∑

i=1

Xi

]

=

n
∑

i=1

E[xi]

• What is E[Xi]?

FR-62: Hiring Problem

• What is E[Xi]?

• E[Xi] = Probability that the ith candidate is hired

• When is the ith candidate hired?

FR-63: Hiring Problem

• What is E[Xi]?

• E[Xi] = Probability that the ith candidate is hired

• ith candidate hired when s/he is better than the i− 1 candidates that came before

• Assuming that all permutations of candidates are equally likely, what is the probability that the ith candi-

date is the best of the first i candidates?

FR-64: Hiring Problem

• What is E[Xi]?

• E[Xi] = Probability that the ith candidate is hired

• ith candidate hired when s/he is better than the i− 1 candidates that came before

• Assuming that all permutations of candidates are equally likely, what is the probability that the ith candi-

date is the best of the first i candidates?

• 1
i

FR-65: Hiring Problem

Probability that the ith candidate is best of first i is 1
i

• Sanity Check: (Doing a few concrete examples as a sanity check is often a good idea)

• i = 1, probability that the first candidate is the best so far = 1/1 = 1

• i = 2: (1,2), (2,1) In one of the two permutations, 2nd candidate is the best so far

CS673-2016F-FR Final Review 15

• i = 3: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) In two of the 6 permutations, the 3rd

candidate is the best so far

• Note that a few concrete examples do not prove anything, but a counter-example can show that you have made

a mistake

FR-66: Hiring Problem

• Now that we know that E[Xi] =
1
i , we can find the expected number of hires:

E[X] = E

[

n
∑

i=1

Xi

]

=

n
∑

i=1

E[xi]

=

n
∑

i=1

1/i

= lnn+O(1)

∈ O(lg n)

If the candidates are seen randomly

FR-67: Heap Examples

20

8 15

7 6 4 14

5 2 1 3
Valid Heap

FR-68: Heap Examples

CS673-2016F-FR Final Review 16

20

8 15

7 9 4 14

5 2 1 3
Invalid Heap

FR-69: Heap Operations

• Assuming a Min-Heap

• Insert

• Delete Min

• Decrease Key

FR-70: Building a Heap

Build a heap out of n elements

• Start with an empty heap

• Do n insertions into the heap

MaxHeap H = new MaxHeap();

for(i=0 < i<A.size(); i++)

H.insert(A[i]);

Running time? O(n lg n) – is this bound tight?

FR-71: Building a Heap Total time: c1 +
∑n

i=1 c2 lg i

FR-72: Building a Heap Total time: c1 +
∑n

i=1 c2 lg i

c1 +

n
∑

i=1

c2 lg i ≥
n
∑

i=n/2

c2 lg i

≥
n
∑

i=n/2

c2 lg(n/2)

= (n/2)c2 lg(n/2)

= (n/2)c2((lg n)− 1)

∈ Ω(n lg n)

Running Time: Θ(n lg n)
FR-73: Building a Heap

Build a heap from the bottom up

CS673-2016F-FR Final Review 17

• Place elements into a heap array

• Each leaf is a legal heap

• First potential problem is at location ⌊i/2⌋

FR-74: Building a Heap

Build a heap from the bottom up

• Place elements into a heap array

• Each leaf is a legal heap

• First potential problem is at location ⌊i/2⌋

for(i=n/2; i>=0; i--)

siftdown(i);

FR-75: Building a Heap

How many swaps, worst case? If every siftdown has to swap all the way to a leaf:

n/4 elements 1 swap

n/8 elements 2 swaps

n/16 elements 3 swaps

n/32 elements 4 swaps

. . .
Total # of swaps:

n/4 + 2n/8 + 3n/16 + 4n/32 + . . .+ (lg n)n/n

FR-76: Heapsort

• How can we use a heap to sort a list?

• Build a heap out of the array we want to sort (Time Θ(n))

• While the heap is not empty:

• Remove the largest element

• Place this element in the “empty space” just cleared by the deletion

Total time: Θ(n lgn)
FR-77: Divide & Conquer

• Quicksort:

• Pick a pivot element

• Divide the list into elements < pivot, elements > pivot

• Recursively sort each of these two segments

• No work required after recursive step

• Dividing the list is harder

• Combining solutions is easy (no real work required)

FR-78: Quicksort

CS673-2016F-FR Final Review 18

Quicksort(A, low, high)

if (low ¡ high) then

pivotindex← Partition(A, low, high)

Quicksort(A, low, pivotindex − 1)

Quicksort(A, pivotindex + 1, high)

FR-79: Quicksort

• How can we efficiently partition the list?

FR-80: Quicksort

• How can we efficiently partition the list?

• Method 1:

• Maintain two indices, i and j

• Everything to left of i ≤ pivot

• Everything to right if j ≥ pivot

• Start i at beginning of the list, j at the end of the list, move them in maintaining the conditions above

FR-81: Quicksort

• How can we efficiently partition the list?

• Method 2:

• Maintain two indices, i and j

• Everything to left of i ≤ pivot

• Everything between i and j ≥ pivot

• Start both i and j at beginning of the list, increase them while maintaining the conditions above

FR-82: Partition

Partition(A, low, high)

pivot = A[high]

i← low - 1

for j← low to high - 1 do

if (A[j] ≤ pivot then

i← i + 1

swap A[i]↔ A[j]

swap A[i+1]↔ A[hight]

FR-83: Partition

Partition example:

5 7 1 3 6 2 8 4

FR-84: Quicksort

• Running time for Quicksort: Intuition

CS673-2016F-FR Final Review 19

• Worst case: list is split into size 0, size (n-1)

T (n) = T (n− 1) + T (0) + Θ(n)

= T (n− 1) + Θ(n)

Recursion Tree

FR-85: Quicksort

cn

c(n-1)a

c(n-2)a

c(n-3)a

cn

a+c(n-1)

a+c(n-2)

a+c(n-3

...

...

n

(n-1)a + Σ ci
i=1

n

FR-86: Quicksort

Confirm O(n2) with substitution method:

T (n) = T (n− 1) + c ∗ n

FR-87: Quicksort

Confirm O(n2) with substitution method:

T (n) = T (n− 1) + c ∗ n
≤ c1 ∗ (n− 1)2 + c ∗ n
≤ c1 ∗ (n2 − 2n+ 1) + c ∗ n
≤ c1 ∗ n2 + (c− 2 ∗ c1 + 1/n) ∗ n
≤ c1 ∗ n2

(if c1 > (c+ 1/n)/2)

FR-88: Quicksort

Confirm Ω(n2) with substitution method:

CS673-2016F-FR Final Review 20

T (n) = T (n− 1) + c ∗ n
≥ c1 ∗ (n− 1)2 + c ∗ n
≥ c1 ∗ (n2 − 2n+ 1) + c ∗ n
≥ c1 ∗ (n2 − 2n) + c ∗ n
≥ c1 ∗ n2 + (c− 2 ∗ c1) ∗ n
≥ c1 ∗ n2

(if c1 > c/2)

FR-89: Quicksort

• Average case:

• What is the average case?

• We can assume that all permutations of the list are equally likely (is this a good assumption?)

• What else can we do?

FR-90: Partition

Partition(A, low, high)

pivot = A[high]

i← low - 1

for j← low to high - 1 do

if (A[j] ≤ pivot then

i← i + 1

swap A[i]↔ A[j]

swap A[i+1]↔ A[hight]

FR-91: Randomized Partition

Partition(A, low, high)

swap A[high]↔ A[random(low,high)]

pivot = A[high]

i← low - 1

for j← low to high - 1 do

if (A[j] ≤ pivot then

i← i + 1

swap A[i]↔ A[j]

swap A[i+1]↔ A[hight]

FR-92: Quicksort Analysis

• OK, we can assume that all permutations are equally likely (especially if we randomize partition)

• How long does quicksort take in the average case?

FR-93: Quicksort Analysis

CS673-2016F-FR Final Review 21

• Time for quicksort dominated by time spent in partition procedure

• Partition can be called a maximum of n times (why)?

• Time for each call to partition is Θ(1) + # of times through for loop

• Total number of times the test (A[j] ≤ pivot) is done is proportional to the time spent for the loop

• Therefore, the total # of times the test (A[j] ≤ pivot) is a bound on the time for the entire algorithm

FR-94: Quicksort Analysis

Some definitions:

• Define zi to be the ith smallest element in the list

• Define Zij to be the set of elements zi, zi+1, . . . zj

So, if our array A = {3, 4, 1, 9, 10, 7} then:

• z1 = 1, z2 = 3, z3 = 4, etc

• Z35 = {4, 7, 9}

• Z46 = {7, 9, 10}

FR-95: Quicksort Analysis

• Each pair of elements can be compared at most once (why)?

• Define an indicator variable Xij = I{zi is compared to zj}

X =

n−1
∑

i=1

n
∑

j=i+1

Xij

E[X] = E[

n−1
∑

i=1

n
∑

j=i+1

Xij]

E[X] =
n−1
∑

i=1

n
∑

j=i+1

E[Xij]

E[X] =

n−1
∑

i=1

n
∑

j=i+1

Pr{zi compared to zj}

FR-96: Quicksort Analysis

• Calculating E[Xij]:

• When will element zi be compared to zj?

• A = {1, 2, 3, 4, 5, 6, 7, 8, 9 , 10}

• If pivot = 6

• 6 will be compared to every other element

• 1-5 will never be compared to anything in 7-10

CS673-2016F-FR Final Review 22

FR-97: Quicksort Analysis

• Calculating E[Xij]:

• Given any two elements zi, zj , if we pick some element x as a pivot such that zi < x < zj , then zi and zj
will never be compared to each other

• zi and zj will be compared with each other when the first element chosen Zij is either zi or zj

FR-98: Quicksort Analysis
Pr{zi is compared to zj} = Pr{zi or zj is first pivot selected from Zij

= Pr{zi is first from Zij} + Pr{zj is first from Zij }

= 1/(j − i + 1) + 1/(j − i + 1)
= 2/(j − i + 1)

FR-99: Quicksort Analysis

E[X] =
n−1
∑

i=1

n
∑

j=i+1

E[Xij]

=
n−1
∑

i=1

n
∑

j=i+1

2

j − i+ 1

=

n−1
∑

i=1

n−i
∑

k=1

2

k + 1

<

n−1
∑

i=1

n−i
∑

k=1

2

k

<
n−1
∑

i=1

2 ln(n− i) + 1

FR-100: Quicksort Analysis

E[X] <

n−1
∑

i=1

2 ln(n− i) + 1

<

n−1
∑

i=1

2 ln(n) + 1

< 2 ∗ n ln(n) + 1

∈ O(n lg n)

FR-101: Comparison Sorting

• Comparison sorts work by comparing elements

• Can only compare 2 elements at a time

• Check for <, >, =.

• All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts

• If we know nothing about the list to be sorted, we need to use a comparison sort

CS673-2016F-FR Final Review 23

FR-102: Decision Trees Insertion Sort on list {a, b, c}
a<b<c b<c<a
a<c<b c<a<b
b<a<c c<b<a

a<b<c
a<c<b
c<a<b

b<a<c
b<c<a
c<b<a

a<b<c a<c<b
c<a<b

a<c<b c<a<b

b<a<c b<c<a
c<b<a

b<c<a c<b<a

a<b b<a

b<c c<b a<c c<a

a<c c<a b<c c<b

FR-103: Sorting Lower Bound

• All comparison sorting algorithms can be represented by a decision tree with n! leaves

• Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height

of the tree

• A decision tree with n! leaves must have a height of at least n lgn

• All comparison sorting algorithms have worst-case running time Ω(n lgn)

FR-104: Counting Sort

• Create the array C[], such that C[i] = # of times key i appears in the array.

• How?

• Modify C[] such that C[i] = the index of key i in the sorted array. (assume no duplicate keys, for now)

• If x 6∈ A, we don’t care about C[x]

FR-105: Counting Sort Revisited

• Create the array C[], such that C[i] = # of times key i appears in the array.

• Modify C[] such that C[i] = the index of key i in the sorted array. (assume no duplicate keys, for now)

• If x 6∈ A, we don’t care about C[x]

for(i=1; i<C.length; i++)

C[i] = C[i] + C[i-1];

• If the list has duplicates, then C[i] will contain the index of the last occurence of i.

• Example: 3 1 2 3 9 8 7

FR-106: Counting Sort

CS673-2016F-FR Final Review 24

for(i=0; i<A.length; i++)

C[A[i].key()]++;

for(i=1; i<C.length; i++)

C[i] = C[i] + C[i-1];

for (i=A.length - 1; i>=0; i++) {

B[C[A[i].key()]] = A[i];

C[A[i].key()]--;

}

for (i=0; i<A.length; i++)

A[i] = B[i];

FR-107: Radix Sort Second Try:

• Sort by least significant digit first

• Then sort by next-least significant digit, using a Stable sort

. . .

• Sort by most significant digit, using a Stable sort

At the end, the list will be completely sorted. Why?

FR-108: Selection Problem

• What if we want to find the kth smallest element?

• Median: k = ⌈n2 ⌉th smallest element, for odd n

• What is the obvious method?

• Can we do better?

FR-109: Selection Problem

Quicksort(A, low, high)

if (low ¡ high) then

pivotindex← Partition(A, low, high)

Quicksort(A, low, pivotindex 1)

Quicksort(A, pivotindex + 1, high)

Partition(A, low, high)

pivot = A[high]

i← low - 1

for j← low to high - 1 do

if (A[j]≤ pivot then

i← i + 1

swap A[i]↔ A[j]

swap A[i+1]↔ A[high]

FR-110: Selection Problem

Select(A,low,high,k)

if (low = high)

return A[low]

pivot = Partition(A, low, high)

adj pivot = piv - low + 1

CS673-2016F-FR Final Review 25

if (k = adj pivot) then

return A[pivot]

if (k ¡ adj pivot) then

return Select(A,low,pivot-1, k)

else

return Select(A,pivot+1, high, pivot-adj pivot)

Running time (Best and worst case)?

FR-111: Selection Problem

• Best case time:

T (n) = T (n/2) + c ∗ n ∈ Θ(n)

• Worst case time:

T (n) = T (n− 1) + c ∗ n ∈ Θ(n2)

• Average case time turns out to be Θ(n), but we’d like to get the worst-case time down.

FR-112: Selection Problem

• Improving worst-case time for selection

• We need to guarantee a “good” pivot to get Θ(n) time for selection

• How much time can we spend to find a good pivot, and still get Θ(n) time for selection?

• O(n) !

FR-113: Selection Problem

• Finding a “Good” pivot (one that is near the median) in linear time:

• Split the list into n
5 list of length 5

• Do an insertion sort on each of the n
5 lists to find the median of each of these lists

• Call select recursively to find the median of the n
5 medians

FR-114: Binary Search Trees

• Binary Trees

• For each node n, (value stored at node n) > (value stored in left subtree)

• For each node n, (value stored at node n) < (value stored in right subtree)

FR-115: Example Binary Search Trees

• Examples:

• Finding an element

• Inserting an element

• Deleting an element

CS673-2016F-FR Final Review 26

FR-116: Balanced BSTs

• We can guarantee O(lg n) running time for insert/find/delete if we can guarantee the tree is balanced

• Several methods for guaranteeing a balanced tree

• AVL trees & Red-Black trees are the most common

• We’ll look at Red-Black Trees

FR-117: Red-Black Trees

• Red-Black Trees as Binary Search trees, with “Null Leaves”

• Examples of BSTs with “Null Leaves”

• (Null leaves are mostly a notational convenience)

FR-118: Red-Black Trees

• Red-Black Trees are Binary Search trees, with “Null Leaves”, and the following properties:

• Every Node is either Red or Black

• (Root is Black) <Not strictly required>

• Each null “leaf” is Black

• If a node is red, both children are black

• For each node, all paths from the node to descendant leaves contain the same number of black nodes

FR-119: Red-Black Trees

8

3 9

2 5

4nl nl nl

nl nl

nl nl

FR-120: Red-Black Trees

8

3 9

2 5

4

CS673-2016F-FR Final Review 27

• Example Red-Black tree (“Null Leaves” left out for clarity)

FR-121: Tree Rotations

Y

X C

A B

Y

X

C

A

B

Right Rotate

Left Rotate

FR-122: Tree Insertions

• Always insert red nodes

• Which property would be violated by inserting a red node?

FR-123: Tree Insertions

• Always insert red nodes

• Which property would be violated by inserting a red node?

• Could have a red node with a red child

• Fix using tree rotations

FR-124: Tree Insertions

• To fix a red node with red child:

• Case 1: Uncle is red

• Case 2: Uncle is black, Inserted node is right child of parent, and parent is a left child of Grandparent (or

node is left child, parent is right child)

• Case 3: Uncle is black, Node is left child of parent, parent is left child of Grandparent (or node is righ

child, parent is right child)

FR-125: Case 1

• Red Uncle

D

C

A

Bα

β γ

δ ε

FR-126: Case 1

CS673-2016F-FR Final Review 28

• Red Uncle

D

C

A

Bα

β γ

δ ε

FR-127: Case 2

• Black Uncle / parent child different handedness

C

A

Bα

β γ

δ

FR-128: Case 3

• Black Uncle / parent child same handedness

C

B

β

γ

δ

α

A

FR-129: Case 3

• Black Uncle / parent child same handedness

CS673-2016F-FR Final Review 29

B

C

β γ δα

A

FR-130: Deleting nodes

• Deleting nodes

• Delete nodes just like in standard BST

• Which properties could be violated by deleting a red node?

• Each node red or black

• Black Root

• Each red node has 2 black children

• Black path length to leaves same for each node

FR-131: Deleting nodes

• Deleting nodes

• Delete nodes just like in standard BST

• Which properties could be violated by deleting a red node?

• None!

FR-132: Deleting Nodes

• Deleting nodes

• Delete nodes just like in standard BST

• Which properties could be violated by deleting a black node?

• Each node red or black

• Black Root

• Each red node has 2 black children

• Black path length to leaves same for each node

FR-133: Deleting Nodes

• Deleting black node

• If the child of the deleted node is red ... (show example on board)

FR-134: Deleting Nodes

• Deleting black node

CS673-2016F-FR Final Review 30

• If the child of the deleted node is black

• Make the child “doubly black”

• Push “extra blackness” up the tree until it can be removed by a rotation

FR-135: Deleting Nodes

• X is “doubly black” node, X is a left child

• Case 4:

• X’s sibling W is black, and W’s right child is red

• Can remove “double-blackness” of X with a single rotation

FR-136: Deleting Nodes

B

D

βα

A

C E

δγ ζε

Doubly

Black

FR-137: Deleting Nodes

D

B

ζε

E

A C

βα δγ
FR-138: Deleting Nodes

CS673-2016F-FR Final Review 31

B

D

βα

A

C E

δγ ζε

Doubly

Black

FR-139: Deleting Nodes

D

B

ζε

E

A C

βα δγ
FR-140: Deleting Nodes

• X is “doubly black” node, X is a left child

• Case 3:

• X’s sibling W is black, and W’s left child is red, and right child is black

• Single rotation to get to previous case

FR-141: Deleting Nodes

CS673-2016F-FR Final Review 32

B

D

βα

A

C E

δγ ζε

Doubly

Black

FR-142: Deleting Nodes

B

C

βα

A

D
γ

δ

Doubly

Black

E

ζε
FR-143: Deleting Nodes

B

D

βα

A

C E

δγ ζε

Doubly

Black

FR-144: Deleting Nodes

CS673-2016F-FR Final Review 33

B

C

βα

A

D
γ

δ

Doubly

Black

E

ζε
FR-145: Deleting Nodes

• X is “doubly black” node, X is a left child

• Case 2:

• X’s sibling W is black, and both of W’s children are black

• Push “Blackness” of X and W to parent

FR-146: Deleting Nodes

B

D

βα

A

C E

δγ ζε

Doubly

Black

FR-147: Deleting Nodes

CS673-2016F-FR Final Review 34

B

D

βα

A

C E

δγ ζε
FR-148: Deleting Nodes

B

D

βα

A

C E

δγ ζε

Doubly

Black

FR-149: Deleting Nodes

CS673-2016F-FR Final Review 35

B

D

βα

A

C E

δγ ζε

Doubly

Black

FR-150: Deleting Nodes

• X is “doubly black” node, X is a left child

• Case 2:

• X’s sibling W is Red

• Do a rotation, to make W black. Then one of the other cases will apply.

FR-151: Deleting Nodes

B

D

βα

A

C E

δγ ζε

Doubly

Black

FR-152: Deleting Nodes

CS673-2016F-FR Final Review 36

D

E

βα

B

A C

δγ

ζε

Doubly

Black

FR-153: Deleting Nodes

• Need to include symmetric cases

• In all of the previous examples, swap left/right

• (Go over at least one example)

FR-154: Dynamic Order Statistics

• Data structure with following operations:

• Insert / Remove / Find Θ(lgn)

• Find nth smallest element

• Find the rank of any element (is it smallest, second smallest, etc)

How can we do this with red/black trees?

• How to find the rank of any element in a red/black tree

• How to find the nth element in a red/black tree

FR-155: Dynamic Order Statistics

• Addinging functionality to red/black trees

• Finding the nth element in a red/black tree

• Finding the rank of any element in a red/black tree

• What if we could add some other data to a red/black tree, to make this easier?

• What should we add?

• How could we use it?

FR-156: Size Field

• Add a “size” field to each node in a red/black tree

• How can we use this size field to find the nth element in the tree?

CS673-2016F-FR Final Review 37

• How can we use this size field to find the rank of any element?

• Can we maintain the size field, and still have insert/remove/find take time O(lg n)?

FR-157: Using Size Field

• To find the kth element in a red/black tree with size field:

• If # of elements in left subtree = k − 1, then root is the kth element

• if # of elements in left subtree > k − 1, then the kth element is the kth element in the left subtree

• if # of elements in the left subtree = n < k− 1, then the kth element is the (n− (k+ 1))th element in the

right subtree

FR-158: Updating Size: Insert

• Updating size field on insert:

FR-159: Updating Size: Insert

• Updating size field on insert:

• As we go down the tree looking for the correct place to insert an element, add one to the size field of every

node along the path from the root to the inserted element

• (examples on board)

FR-160: Updating Size: Delete

• Updating size field on delete:

FR-161: Updating Size: Delete

• Updating size field on delete:

• As we go down the tree looking for the element to delete, delete one from the size of evey node along the

path from the root to the deleted element

• (examples on board)

• Need to be careful about trying to delete elements that aren’t in the tree

FR-162: Updating Size Field: Rotate

• Updating size on rotations

• How should sizes be updated on rotations?

• (Picture on board)

FR-163: Updating Size Field: Rotate

Y

X C

A B

Y

X

C

A

B

Right Rotate

Sizes of A,B,C not changed

Size(Y) = Size(B) + Size(C) + 1

Size(X) = Size(A) + Size(Y) + 1

Sizes of A,B,C not changed

Size(X) = Size(A) + Size(B) + 1

Size(Y) = Size(X) + Size(C) + 1

Left Rotate

FR-164: Augmenting Data Structures

CS673-2016F-FR Final Review 38

• Decide what extra information to add to each element of the data structure

• Make sure we can update this extra information for each operation on the data structure

• Add operations that use this extra information

• New operations

• Do old operations more efficiently

(Finding rank example)

FR-165: Augmenting Data Structures

• For Red/Black trees:

• If extra information in a node is dependent only on the node itself, and values in left & right children

• Then, we can always update this information during insert and delete in time O(lg n)

FR-166: Augmenting Data Structures

• On an insert:

• Add the leaf

• Update information on path from leaf to root after the insertion

• Extra time: O(lg n)

• Rotate as necessary

FR-167: Augmenting Data Structures

• On a delete:

• Delete the node

• Update information on path from deleted node to root after deletion is completed

• (also works for deletion of node w/ 2 children, do example)

• Extra time: O(lg n)

• Rotate as necessary

FR-168: Augmenting Data Structures

Y

X C

A B

Y

X

C

A

B

Right Rotate

• Values in A,B,C don’t need to change

• Values in X,Y can be changed by looking at A,B,C

• Might need to propagate change up the tree (time O(lg n))

CS673-2016F-FR Final Review 39

FR-169: Dynamic Programming

• Simple, recursive solution to a problem

• Straightforward implementation of recursion leads to exponential behavior, because of repeated subproblems

• Create a table of solutions to subproblems

• Fill in the table, in an order that guarantees that each time you need to fill in a square, the values of the required

subproblems have already been filled in

FR-170: Dynamic Programming

• To solve a Dynamic Programming problem:

• Define the table

• How many dimensions?

• What does each entry mean?

• Give a formula for filling in table entries

• Recursive and base cases

• Give an ordering to fill in the table

FR-171: Dynamic Programming

Give a O(n2) algorithm for finding the longest monotonically increasing subsequence of a sequence of numbers

FR-172: Dynamic Programming

• L[i] = length of longest monotonically increasing subsequence of elements a1 . . . ai that contains element ai

• L[1] = 1

• L[i] =

• 1, if If ai is the smallest value in a1 . . . ai−1

• 1 + L[k], where L[k] is the largest value in ai . . . ai−1 such that ak < ai

FR-173: Greedy Algorithms

• Often (but not always!), creating a greedy solution is easy

• Often (but not always!) takes time Θ(n lgn) (why?)

• Hard part is proving that the algorithm is correct

FR-174: Proving Greedy

• To prove a greedy algorithm is correct:

• Greedy Choice

• At least one optimal solution contains the greedy choice

• Optimal Substructure

• An optimal solution can be made from the greedy choice plus an optimal solution to the remaining

subproblem

• Why is this enough?

CS673-2016F-FR Final Review 40

FR-175: B-Trees

• Generalized Binary Search Trees

• Each node can store several keys, instead of just one

• Values in subtrees between values in surrounding keys

• For non leaves, # of children = # of keys + 1

2 6

1 3 4 7

FR-176: 2-3 Trees

• Generalized Binary Search Tree

• Each node has 1 or 2 keys

• Each (non-leaf) node has 2-3 children

• hence the name, 2-3 Trees

• All leaves are at the same depth

FR-177: Example 2-3 Tree

6 16

3 8 13 18

7 11 12 14 17 202 5

FR-178: Example 2-3 Tree

• Finding an element in a 2-3 tree

• Inserting an element into a 2-3 tree

• Deleting an element from a 2-3 tree

FR-179: B-Trees

• A B-Tree of maximum degree k:

• All interior nodes have ⌈k/2⌉ . . . k children

• All nodes have ⌈k/2⌉ − 1 . . . k − 1 keys

• 2-3 Tree is a B-Tree of maximum degree 3

FR-180: B-Trees

CS673-2016F-FR Final Review 41

• Preemptive Splitting

• If the maximum degree is even, we can implement an insert with a single pass down the tree (instead of a

pass down, and then a pass up to clean up)

• When inserting into any subtree tree, if the root of that tree is full, split the root before inserting

• Every time we want to do a split, we know our parent is not full.

(examples, use visualization) FR-181: Amortized Analysis

• Doing n operations on a data structure

• Some operations take longer than others

• Only care about the average time for an operation

• Be doing many operations on the data structure over the course of an algorithm

• Care about the total time for all operations

FR-182: Aggregate Method

• Aggregate method

• Total cost for n operations is g(n)

• Amortized cost for 1 operation is
g(n)
n

• Works well with just a single operation

• Can be trickier with different kinds of operations

• Insert & find & delete

• Need to either modle the order the operations will be applied, or prove that a particular order maximizes

the total running time

FR-183: Accounting Method

• Accounting Method

• Assign a cost for each operation

• Called “amortized cost”

• When amortized cost > actual cost, create a “credit” which can be used when actual cost > amortized cost

• Must design costs so that all sequences of operations always leave a “positive account”

FR-184: Potential Method

• Definte a “potential” for data structures that your algorithm uses

• Kind of like potential energy

• When the amortized cost is greater than the actual cost, increase the potential of the data structure

• When the amortize cost is less than the actual cost, decrease the potential of the data structure

• Potential can never be negative

FR-185: Potential Method

CS673-2016F-FR Final Review 42

• The potential function is on the Data Structure, not the operations

• Don’t talk about the potential of a push or a pop

• Instead, talk about the potential of the stack

• Define a potential function on the data structure

• Use the potential function and actual cost to determine amortized cost

FR-186: Binomial Heaps

• Binomial Trees

• Binomial Heap

• Set of binomial trees, sorted by degree

• No two trees have the same degree

• Each tree has heap property

• Merging two binomial heaps, deleting minimum element

FR-187: Fibonacci Heaps

• A Fibonacci Heap, like a Binomial Heap, is a collection of min-heap ordered trees

• No restriction on the # of trees of the same size

• (Each tree could be “not really” a binomial tree, after decrease key operations)

• Maintain a pointer to tree with smallest root

FR-188: Fibonacci Heaps

• Merging heaps

• Finding minimum

• Removing minimum

• Consolidate root list

• Decrease key

FR-189: Disjoint Sets

• Maintain a collection of sets

• Operations:

• Determine which set an element is in

• Union (merge) two sets

• Initially, each element is in its own set

• # of sets = # of elements

FR-190: Disjoint Sets

CS673-2016F-FR Final Review 43

• Represetning disjoint sets

• Using trees

• Union-by-Rank

• Path Compression

FR-191: Graphs

• Graph Representation

• Adjacency list

• Adjacency Matrix

• Relative advantages of each representation?

FR-192: Graphs

• Graph Traversals

• BFS

• DFS

• Discovery / Finish Times

• Topological Sort

• Connected Components

FR-193: Minimal Cost Spanning Tree

• Minimal Cost Spanning Tree

• Given a weighted, undirected graph G

• Spanning tree of G which minimizes the sum of all weights on edges of spanning tree

FR-194: Calculating MST

• Generic MST algorithm:

A← {}
while A does not form a spanning tree

find an edge (u, v) that is safe for A
A← A ∪ {(u, v)}

• (u, v) is safe to for A when A ∪ {(u, v)} is a subset of some MST

FR-195: Calculating MST

• Correctness of MST algorithms

• Cuts that respects edges

• Edges crossing cut

• Light edges

CS673-2016F-FR Final Review 44

FR-196: MST Algorithms

• Kruskal

• Combine trees in forrest into one tree

• Prim

• Start from initial vertex

• Build tree outward

FR-197: Single Source Shortest Path

• BFS

• Works for uniform cost edges

• Dijkstra’s Algorithm

• Remarkably similar to Prim’s MST algorith

• Doesn’t work with negative edges

FR-198: Dijkstra Code

void Dijkstra(Edge G[], int s, tableEntry T[]) {

int i, v;

Edge e;

for(i=0; i<G.length; i++) {

T[i].distance = Integer.MAX_VALUE;

T[i].path = -1;

T[i].known = false;

}

T[s].distance = 0;

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance >

T[v].distance + e.cost) {

T[e.neighbor].distance = T[v].distance + e.cost;

T[e.neighbor].path = v;

}

}

}

}

FR-199: Dijkstra Running Time

• If minUnknownVertex(T) is calculated by doing a linear search through the table:

• Each minUnknownVertex call takes time Θ(|V |)
• Called |V | times – total time for all calls to minUnkownVertex: Θ(|V |2)

• If statement is executed |E| times, each time takes time O(1)

• Total time: O(|V |2 + |E|) = O(|V |2).

FR-200: Dijkstra Running Time

• If minUnknownVertex(T) is calculated by inserting all vertices into a min-heap (using distances as key) updating

the heap as the distances are changed

• Each minUnknownVertex call tatkes time Θ(lg |V |)
• Called |V | times – total time for all calls to minUnknownVertex: Θ(|V | lg |V |)

• If statement is executed |E| times – each time takes time O(lg |V |), since we need to update (decrement)

keys in heap

CS673-2016F-FR Final Review 45

• Total time: O(|V | lg |V |+ |E| lg |V |) ∈ O(|E| lg |V |)

FR-201: Dijkstra Running Time

• If minUnknownVertex(T) is calculated by inserting all vertices into a Fibonacci heap (using distances as key)

updating the heap as the distances are changed

• Each minUnknownVertex call takes amortized time Θ(lg |V |)
• Called |V | times – total amortized time for all calls to minUnknownVertex: Θ(|V | lg |V |)

• If statement is executed |E| times – each time takes amortized time O(1), since decrementing keys takes

time O(1).

• Total time: O(|V | lg |V |+ |E|)

FR-202: Bellman-Ford

• For each node v, maintiain:

• A “distance estimate” from source to v, d[v]

• Parent of v, π[v], that gives this distance estimate

• Start with d[v] =∞, π[v] = nil for all nodes

• Set d[source] = 0

• udpate estimates by “relaxing” edges

FR-203: Bellman-Ford

• Relax all edges edges in the graph (in any order)

• Repeat until relax steps cause no change

• After first relaxing, all optimal paths from source of length 1 are computed

• After second relaxing, all optimal paths from source of length 2 are computed

• after |V | − 1 relaxing, all optimal paths of length |V | − 1 are computed

• If some path of length |V | is cheaper than a path of length |V | − 1 that means ...

• Negative weight cycle

FR-204: Bellman-Ford

BellamanFord(G, s)

Initialize d[], π[]
for i← 1 to |V | − 1 do

for each edge (u, v) ∈ G do

if d[v] > d[u] + w(u, v)
d[v]← d[u] + w(u, v)
π[v]← u

for each edge (u, v) ∈ G do

if d[v] > d[u] + w(u, v)
return false

return true

CS673-2016F-FR Final Review 46

FR-205: Bellman-Ford

• Running time:

• Each iteration requires us to relax all |E| edges

• Each single relaxation takes time O(1)

• |V | − 1 iterations (|V | if we are checking for negative weight cycles)

• Total running time O(|V | ∗ |E|)

FR-206: All-Source Shortest Path

• What if we want to find the shortest path from all vertices to all other vertices?

• How can we do it?

• Run Dijktra’s Algorithm V times

• How long will this take?

• Θ(V 2 lg V + V E) (using Fibonacci heaps)

• Doesn’t work if there are negative edges! Running Bellman-Ford V times (which does work with

negative edges) takes time O(V 2E) – which is Θ(V 4) for dense graphs

FR-207: Floyd’s Algorithm

• Vertices numbered from 0..n

• k-path from vertex v to vertex u is a path whose intermediate vertices (other than v and u) contain only vertices

numbered k or less

• 0-path is a direct link

FR-208: Floyd’s Algorithm

• Let Dk[v, w] be the length of the shortest k-path from v to w.

• D0[v, w] = cost of arc from v to w (∞ if no direct link)

• Dk[v, w] = MIN(Dk−1[v, w], Dk−1[v, k] +Dk−1[k, w])

• Create D0, use D0 to create D1, use D1 to create D2, and so on – until we have Dn

FR-209: Floyd’s Algorithm

Floyd(Edge G[], int D[][]) {

int i,j,k

Initialize D, D[i][j] = cost from i to j

for (k=0; k<G.length; k++;

for(i=0; i<G.length; i++)

for(j=0; j<G.length; j++)

if ((D[i][k] != Integer.MAX_VALUE) &&

(D[k][j] != Integer.MAX_VALUE) &&

(D[i][j] > (D[i,k] + D[k,j])))

D[i][j] = D[i][k] + D[k][j]

}

CS673-2016F-FR Final Review 47

FR-210: Johnson’s Algorithm

• Yet another all-pairs shortest path algorithm

• Time O(|V |2 lg |V |+ |V | ∗ |E|)

• If graph is dense (|E| ∈ Θ(|V |2)) , no better than Floyd

• If graph is sparse, better than Floyd

• Basic Idea: Run Dijkstra |V | times

• Need to modify graph to remove negative edges

FR-211: Johnson’s Algorithm

Johnson(G)

Add s to G, with 0 weight edges to all vertices

if Bellman-Ford(G, s) = FALSE

There is a negative weight cycle, fail

for each vertex v ∈ G
set h(v)← δ(s, v) from B-F

for each edge (u, v) ∈ G
ŵ(u, v) = w(u, v) + h(u)− h(v)

for each vertex u ∈ G

run Dijkstra(G, ŵ, u) to compute δ̂(u, v)

δ(u, v) = δ̂(u, v) + h(v)− h(u)

FR-212: Flow Networks

• Directed Graph G

• Each edge weigh is a “capacity”

• Amount of water/second that can flow through a pipe, for instance

• Single source S, single sink t

• Calculate maximum flow through graph

FR-213: Flow Networks

• Flow: Function: V × V → R

• Flow from each vertex to every other vertex

• f(u, v) is the direct flow from u to v

• Properties:

• ∀u, v ∈ V, f(u, v) ≤ c(u, v)

• ∀u, v ∈ V, f(u, v) = −f(v, u)
• ∀u, v ∈ V − {s, t},∑v∈V f(u, v) = 0

• Total flow, |f | = ∑

v∈V f(s, v) =
∑

v∈V f(v, t)

CS673-2016F-FR Final Review 48

FR-214: Flow Networks

• Single Source / Single Sink

• Assume that there is always a single source and a single sink

• Don’t lost any expressive power – always transform a problem with multiple sources and multiple sinks to

an equivalent problem with a single source and a single sink

• How?

FR-215: Flow Networks

• Residual capacity

• cf (u, v) is the residual capacity of edge (u, v)

• cf (u, v) = c(u, v)− f(u, v)

• Note that it is possible for the residual capacity of an edge to be greater than the total capacity

• Cancelling flow in the opposite direction

FR-216: Ford-Fulkerson Method

Ford-Fulkerson(G, s, t)
initialize flow f to 0

while there is an augmenting path p
augment flow f along p

return f

FR-217: Ford-Fulkerson Method

• Could take as many as |f | iterations:

s

a

b

t

1000000 1000000

1

1000000 1000000

FR-218: Edmonds-Karp Algorithm

• How can we be smart about choosing the augmenting path, to avoid the previous case?

• We can get better performance by always picking the shortest path (path with the fewest edges)

CS673-2016F-FR Final Review 49

• We can quickly find the shortest path by doing a BFS from the source in the residual network, to find the

shortest augmenting path

• If we always choose the shortest augmenting path (i.e., smallest number of edges), total number of itera-

tions is O(|V | ∗ |E|), for a total running time of O(|V | ∗ |E|2)

FR-219: Push-Relabel Algorithms

• New algorithm for calculating maximum flow

• Basic idea:

• Allow vertices to be “overfull” (have more inflow than outflow)

• Push full capacity out of edges from source

• Push overflow at each vertex forward to the sink

• Push excess flow back to source

FR-220: Push-Relabel Algorithms

Push(u, v)

Applies when:

u is overflowing

cf (u, v) > 0
h[u] = h[v] + 1

Action:

Push min(overflow[u],cf(u, v)) to v

FR-221: Push-Relabel Algorithms

Relabel(u)

Applies when:

u is overflowing

For all v such that cf (u, v) > 0
h[v] ≥ h[u]

Action:

h[u]← h[u] + 1

FR-222: Push-Relabel Algorithms

Push-Relabel(G)

Initialize-Preflow(G, s)

while there exists an applicable push/relabel

implement push/relabel

FR-223: Push-Relabel Algorithms

Push-Relabel(G)

Initialize-Preflow(G, s)

while there exists an applicable push/relabel

implement push/relabel

CS673-2016F-FR Final Review 50

• Pick the operations (push/relabel) arbitrarily, time is O(|V |2E)

• (We won’t prove this result, though the proof is in the book)

• Can do better with relabel-to-front

• Specific ordering for doing push-relabel

• Time O(|V |3), also not proven here, proof in text

FR-224: Cross Products

• Given any two points p1 = (x1, y1) and p2 = (x2, y2)

• Cross Product: p1 × p2 = x1y2 − x2y1

p1 × p2 = x1y2 − x2y1

= −1 ∗ (x2y1 − x1y2)

= −p2 × p1

FR-225: Cross Products

• Given two line segments p0p1 and p1p2, which direction does angle 6 p0p1p2 turn?

• (p2 − p0)× (p1 − p0) is positive, left turn

• (p2 − p0)× (p1 − p0) is negative, right turn

• (p2 − p0)× (p1 − p0) is zero, no turn (colinear)

FR-226: Line Segment Intersection

• Given two line segments p1p2 and p3p4, do they intersect?

• Each segment straddles the line containing the other

• An endpoint of one segment lies on the other segment

FR-227: Line Segment Intersection

• How can we determine if p3 is on the segment p1p2?

• p3 is on the line defined by p1 and p2

• (p2 − p1)× (p3 − p1) = 0

• p3 is in the proper range along that line

• p3x ≥ p1x&&p3x ≤ p2x or

p3x ≤ p1x&&p3x ≥ p2x
• p3y ≥ p1y&&p3y ≤ p2y or

p3y ≤ p1y&&p3y ≥ p2y

FR-228: Convex Hull

• Given a set of points, what is the smallest convex polygon that contains all points

CS673-2016F-FR Final Review 51

• Alternately, if all of the points were nails in a board, and we placed a rubber band around all of them, what shape

would it form?

FR-229: Convex Hull

• Graham’s Scan Algorithm

• Go through all the points in order

• Push points onto a stack

• Pop off points that don’t form part of the convex hull

• When we’re done, stack contains the points in the convex hull

FR-230: Convex Hull

• Different Convex Hull algorithm

• Idea:

• Attach a string to the lowest point

• Rotate string counterclockwise, unti it hits a point – this point is in the Convex Hull

• Keep going until the highest point is reached

• Continue around back to initial point

FR-231: Closest Pair of Points

• Divide & Conquer

• Divide the list points in half (by a vertical line)

• Recursively determine the closest pair in each half

• Smallest distance between points is the minimum of:

• Smallest distance in left half of points

• Smallest distance in right half of points

• Smallest distance that crosses from left to right

FR-232: String Matching

• Given a source text, and a string to match, where does the string appear in the text?

• Example: ababbabbaba and abbab

a b a b b a b b a b a

x x x x x

x x x x x

FR-233: String Matching

NAIVE-STRING-MATCHER(T, P)

n← length[T]

m← length[P]

for s← 0 to n−m do

match← false

for j ← 1 to m do

if T [i+ j] 6= T [j] then

match← false

if match then

Print “Pattern occurs with shift” s

CS673-2016F-FR Final Review 52

FR-234: Rabin-Karp

• Convert pattern to integer

• Use modular arithmetic to make the number size managable

• Check for matches against this integer

• Each hit might be spurious, need to verify

• Every time we get a potential hit, check the actual strings

FR-235: DFA

• Start in the initial state

• Go through the string, one character at a time, until the string is exhausted

• Determine if we are in a final state at the end of the string

• If so, string is accepted

• If not, string is rejected

FR-236: DFA

• All strings over {0,1} that end in 111

1 1 1

0

00

0 1

q
0

q
1

q
2

q
3

FR-237: DFA

• You can use the DFA for all strings that end in 1001 to find all occurrences of the substring 1001 in a larger

string

• Start at the beginning if the larger string, in state q0

• Go through the string one symbol at a time, moving through the DFA

• Every time we enter a final state, that’s a match

FR-238: DFA

• Creating transition function δ:

• Create a new concept: σP (x)

• Length of the longest prefix of P that is a suffix of x

• P = aba

CS673-2016F-FR Final Review 53

• σP (cba) = 1, σP (abc) = 0, σP (cab) = 2, σP (caba) = 3

• Pk = first k symbols of P

FR-239: DFA

• δ(q, a) = σ(Pqa)

• To find δ(q, a):

• Start with string Pq: first q characters of P

• Append a, to get Pqa

• Find the longest prefix of P that is a suffix of Pqa.

FR-240: DFA

• Building δ:

m← length[P]

for q ← 0 to m do

for each character a ∈ Σ do

k ← min(m+ 1, q + 2)
do

k← k − 1
until Pk =] Pqa
δ(q, a)← k

FR-241: Knuth-Morris-Pratt

• Maximum overlap array

• How much can the string overlap with itself at each position?

a b a b a a b b a

0 0 1 2 3 1 2 0 1

FR-242: Knuth-Morris-Pratt

• Prefix Function π:

• π[q] = max{k : k < q&&Pk =] Pq}
• π[q] is the length of the longest prefix of P that is a proper suffix of Pq

FR-243: Knuth-Morris-Pratt

• Try to match pattern to input

• When a mismatch occurs, the π array tells us how far to shift the pattern forward

Pattern: ababb π:
a b a b b

0 0 1 2 0

Input String:
a b a b a b b a b b a b a b a b b

a b a b b

FR-244: Knuth-Morris-Pratt

CS673-2016F-FR Final Review 54

• Creating π array

m← length[P]

π[1]← 0
k ← 0
for q ← 2 to m do

while k > 0 and P [k + 1] 6= P [q]
k ← π[k]

if P [k + 1] = P [q]
k ← k + 1

π[q]← k

FR-245: Knuth-Morris-Pratt

KMP-Matching(T, P)

m← length[P]

n← length[T]

π ← ComputePI(P)

q ← 0
for i← 1 to n do

while q > 0 and P [q + 1] 6= T [i]
q ← π[q]

if P [q + 1] = T [i]
q ← q + 1

if q = m
Print “Match found at” i−m
q ← π[q]

FR-246: Classes of Problems

• Consider three problem classes:

• Polynomial (P)

• Nondeterminisitic Polynomial (NP)

• NP-Complete

• (only scratch the surface, take Automata Theory to go in depth)

FR-247: Class P

• Given a problem, we can find a solution in polynomial time

• Time is polynomial in the length of the problem description

• Encode the problem in some resonable way (like a string S)

• Can create a solution to the problem in time O(|S|k), for some constant k.

FR-248: NP

• Nondeterministic Polynomial (NP) problems:

• Given a solution, that solution Can be verified in polynomial time

CS673-2016F-FR Final Review 55

• If we could guess a solution to the problem (that’s the Non-deterministic part), we could verify the solution

quickly (polynomial time)

• All problems in P are also in NP

• Most problems are in NP

•
FR-249: Class NP-Complete

• A problem is NP-Complete if:

• Problem is NP

• If you could solve the problem in polynomial time, then you could solve all NP problems in polynomial

time

• Reduction:

• Given problem A, create an instance of problem B (in polynomial time)

• Solution to problem B gives a solution to problem A

• If we could solve B, in polynomial time, we could solve A in polynomial time

FR-250: Proving NP-Completeness

• Once you have the first NP-complete problem, easy to find more

• Given an NP-Complete problem P

• Different problem P ′

• Polynomial-time reduction from P to P ′

• P ′ must be NP-Complete

FR-251: Approximation Ratio

• An algorithm has an approximation ratio of ρ(b) if, for any input size n, the cost of the solution produced by

the algorithm is within a factor of ρ(n) of an optimal solution

max

(

C

C∗
,
C∗

C

)

≤ ρ(n)

• For a maximization problem, 0 < C ≤ C∗

• For a minimizaion problem, 0 < C∗ ≤ C

FR-252: Approximation Ratio

• Some problems have a polynomial solution, with ρ(n) = c for a small constant c.

• For other problems, best-known polynomial solutions have an approximation ration that is a function of n

• Bigger problems⇒ worse approximation ratios

FR-253: Approximation Scheme

• Some approximation algorithm takes as input both the problem, and a value ǫ > 0

• For any fixed ǫ, (1 + ǫ)-approximation algorithm

• ρ(n) = 1 + ǫ

• Running time increases as ǫ decreases

