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Context
� Machine learning is a huge field.

� Computer science, artificial 
intelligence, statistics, mathematics.

� Machines learn from the data, they 
don’t just process it. 

�Optical character recognition.

�Learning to identify “spam” from 
“not spam.”

�Robots driving.



Context
� Computational learning theory is a 
branch of computer science devoted 
to analysis of machine learning 
algorithms.

�Resource bounds (time & space)

�Accuracy

�Theoretical capabilities

�Algorithmic learning theory

This is us.



A guessing game
I am thinking of a set.  Can you guess what it is?  
(I will give you some clues, but I will never tell 
you if you are right.)

1. It is a set of positive, whole numbers.

2. It contains all but one number.

3. It contains the number 1.  (Now guess.)

4. It contains the number 3.  (Guess.)

5. It contains the number 4.  (Guess.)

6. It contains the number 2.  (Guess.)

7. It contains the number 6.  (Guess.)

…
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A guessing game
I am thinking of a set.  Can you guess what it is?  
(I will give you some clues, but I will never tell 
you if you are right.)

Now some questions:

1. Are you confident about your latest guess?  
What is a possible next clue that would lead 
you to repeat your guess?  To change it?

2. Were your guesses just random or were they 
made according to some “guessing strategy” 
that you can formulate?  

3. What should count as “winning” this game?

46

2

8

1 73

…



A guessing game
I am thinking of a set.  Can you guess what it is?  
(I will give you some clues, but I will never tell 
you if you are right.)

Now some questions:

4. Say “winning” means that you eventually 
guess right, and then never change your 
guess after that (you win in the limit).  Is it 
possible to win in the limit even after 100 
wrong guesses?  

5. Can you come up with a guessing strategy 
that will always win in the limit?  
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Another guessing game
The teacher thinks of a set that is either 

• All the whole numbers, or

• All but one of the whole numbers.

The teacher gives clues to the learner as in the 
previous game, and the learner has to try to guess 
the set.

Same criterion for winning --- eventually guess 
right in the limit, i.e., from some point on.

Question: Is there a winning strategy for the 
learner?

All numbers…
1 3

5

92
6

4

Wait, all except 2.
Wait, all except 4.
Wait, …

teacher

learner



Yet another guessing game
The teacher thinks of a set that is either 

• All the whole numbers, or

• All but one of the whole numbers.

The teacher gives clues to the learner as in the 
previous game, and the learner has to try to guess 
the set.

Additional rule: If i and j are both in the set, and i
is less than j, then the clue The set contains i will 
come before the clue The set contains j.

Question: Is there a winning strategy for Player II 
in this game?

1, 2, 3, 4, 5, 
6,

All numbers…

Wait, all except 
7…   I win!!

8 …

teacher

learner



Learning Languages
A child learning a language is 
playing the role of the learner in a 
more complex variant of this 
game.

• A language is a set of 
grammatically correct sentences.

• The child will be given clues in the 
form of sentences that are in that 
set.

• The child will try to figure out what 
is in that set (by guessing the 
grammatical rules of the 
language).

You 
shouldn’t 
eat sand.

“You shouldn’t eat 
sand,” is a 

grammatically correct 
sentence in the language 

I am trying to learn.

I guess verbs following 
modal verbs must be in 

the infinite form.



Doing science
A scientist trying to understand 
Nature is a learner in a game like 
this.

• We can think of Nature as the set 
of all natural phenomena.

• The scientist tries to figure out 
how to predict natural 
phenomena.

• Nature provides examples of 
phenomena, but never “tells” the 
scientist if she’s got it right. Einstein’s theory of 

gravity is how to 
predict natural 

phenomena.

Newtonian physics 
is how to predict 

natural 
phenomena.

Hmm…



Formalization of Learning
We want to formalize learning in a tractable way so that we can study it and 
prove things about it.  We’ll take as the underlying motivating scenario a child 
learning a language in an idealized setting.  

A learning paradigm consists of the following:

� A learner.

� A thing to be learned.

� A teacher or presentation of the thing to be learned.

� The hypotheses about the thing to be learned postulated by the learner.

� A criterion for success or identification. 



Formalization of Learning
Human language is messy and full of words.  We are going to make some 
simplifying assumptions so that we can make a rigorous study.  Here are two of 
the big ones:

a language ≡
a set of natural 

numbers
1.

rules of 

grammar

computer 

program≡2.



Language = set of numbers
How does this work?  Let’s just start with English and do some encoding of just words…

� We can assign to each letter of the alphabet a natural number:

� So, each word can be written as a string of numbers:

� We can use the fundamental theorem of arithmetic to turn this string of numbers 

into a single unique number representing that word:



Language = set of numbers
Now, sentences:

� We have a number for each word.

� Now, we can use the same FTA trick to construct sentences:

� So each sentence* has a unique number assigned to it via this scheme.  

� The collection of grammatically correct sentences in the English language is a set of 

numbers.
* in fact, any string of letters and spaces…



Grammar = Program
The motivation for this assumption is the following:

� Real languages aren’t just arbitrary strings of symbols in some alphabet.

� There are rules of grammar and spelling, for example.

� Learning a language doesn’t mean memorizing all the grammatically correct sentences; this is 
impossible anyway --- languages (as sets of sentences) are infinite!

� Learning a language means learning the rules of grammar, vocabulary, and spelling so that 
sentences can be constructed to express what we feel, think, want to ask, etc.

� We really only want to think about how to learn what might be a “real” language by figuring out the 
rules of the grammar that govern that language.  

To completely understand this assumption, we will need to make a foray into the 
world of computability theory.



Turing Machines
A Turing Machine is a theoretical computer formulated by Alan Turing in the 1930’s.  



Turing Machines

TAPE
BLANK ALPHABET SYMBOLS q2

READ/WRITE HEAD

STATE

QUINT
q4



Turing Machines: the fine print



Turing Machines: the fine print



Turing Machines: the fine print



Turing Machines: the fine print

(Patience, young Padawan… the time for examples is near.)



Turing Machines: the fine print

q0

The initial state of a Turing Machine has 

• the input written on the tape,

• the machine head at the first non-blank cell,

• the machine head in the initial state, q0.

INPUT



Turing Machines:  example 1

q0

B B 1  1   0  0  0   1  B  B



Turing Machines:  example 1

q0

B B 1  1   0  0  0   1  B  B



Turing Machines:  example 1

q0 q1

B B 0 1   0  0  0   1  B  B



Turing Machines:  example 1

q1

B B 0  1   0  0  0   1  B  B



Turing Machines:  example 1

q1

B B 0  1   0  0  0   1  B  B



Turing Machines:  example 1

q1 q1

B B 0 0 0  0  0   1  B  B



Turing Machines:  example 1

q1

B B 0 0   0  0  0   1  B  B



Turing Machines:  example 1

q1

B B 0 0   1  0  0   1  B  B



Turing Machines:  example 1

q1

B B 0 0   1  1  0   1  B  B



Turing Machines:  example 1

q1

B B 0 0   1  1  1   1  B  B



Turing Machines:  example 1

q1

B B 0 0   1  1  1   0  B  B



Turing Machines:  example 1

qH

B B 0 0   1  1  1   0  B  B

OUTPUT

Bit-flip 

program



Turing Machines:  example 2



Turing Machines:  example 3

Run this machine on input 253.

What is the output?

Run this machine on input 46.

What is the output?

Pick another number and try it…  

What is the machine doing?



Turing Machines:  example 4

What is the behavior of this machine?

--Try it on “bba”

--Try it on “abba”

--Try some more words…

What’s it doing?



TMs as functions
We can think of a TM as defining a function on natural numbers.  We say that the TM computes

the function.

TMInput Output

Function is 

undefined.

For the rest of our discussion, we’ll only consider TMs on numerical alphabets defining functions on the natural numbers.



Indices of programs
Each one of these machines is described by its set of 
quints. 

Each quint is, in the end, just a string of symbols.

We can use the same coding trick we used for words and 
sentences to encode a Turing Machine as a single number!

This can be done carefully so that each program has a 
number, and each number corresponds to a (perhaps 
nonsensical) TM.

The number that encodes a particular TM in this way is 
called the index or Gödel code of that program.  



TMs as functions
We can think of a TM as defining a function on natural numbers.  We say that the TM computes

the function.

TMInput Output

Natural numbers The index of the TM.



TMs as functions

TM
1. Does every TM define a function?

2. Does every function have a TM? 

3. For the functions that have TMs, 

are they unique?

?

Answer to question 1:  Yes!  (Though possibly not a total function.)

Answer to question 2:  No!  (We’ll come back to this.)

Answer to question 3:  No!



Q3:  Are TMs unique?

Dummy quint.

Theorem. If a function 

can be computed by a 

TM, then there are 

infinitely many TMs 

that compute that 

function.

No.



Q2.  Does every function have a TM? No.



What functions are defined by TMs?

Any function that can be computed on any computer of any kind can be computed by a TM.

Church-Turing Thesis.  The class of functions that can be computed by a TM is the same as the 

class of “effectively calculable” functions.

This is very handy… it means that to demonstrate that a function is computable by a TM, all we have to 

do is give an algorithm for computing it, we don’t have to actually find a set of quints to do it!



What functions are defined by TMs?



What functions are defined by TMs?



What functions are defined by TMs?



What functions are defined by TMs?

Definition:  A function is called partially computable if can be computed by a TM.  

Definition:  A function is called computable if it is total and can be computed by a TM.  

Computable

Partially 

computable



Which functions are partially computable?


