
Algorithmic Learning
Theory
JENNIFER CHUBB

UNIVERSITY OF SAN FRANCISCO

Context
� Machine learning is a huge field.

� Computer science, artificial
intelligence, statistics, mathematics.

� Machines learn from the data, they
don’t just process it.

�Optical character recognition.

�Learning to identify “spam” from
“not spam.”

�Robots driving.

Context
� Computational learning theory is a
branch of computer science devoted
to analysis of machine learning
algorithms.

�Resource bounds (time & space)

�Accuracy

�Theoretical capabilities

�Algorithmic learning theory

This is us.

A guessing game
I am thinking of a set. Can you guess what it is?
(I will give you some clues, but I will never tell
you if you are right.)

1. It is a set of positive, whole numbers.

2. It contains all but one number.

3. It contains the number 1. (Now guess.)

4. It contains the number 3. (Guess.)

5. It contains the number 4. (Guess.)

6. It contains the number 2. (Guess.)

7. It contains the number 6. (Guess.)

…

46

2

8

1 73

…

A guessing game
I am thinking of a set. Can you guess what it is?
(I will give you some clues, but I will never tell
you if you are right.)

Now some questions:

1. Are you confident about your latest guess?
What is a possible next clue that would lead
you to repeat your guess? To change it?

2. Were your guesses just random or were they
made according to some “guessing strategy”
that you can formulate?

3. What should count as “winning” this game?

46

2

8

1 73

…

A guessing game
I am thinking of a set. Can you guess what it is?
(I will give you some clues, but I will never tell
you if you are right.)

Now some questions:

4. Say “winning” means that you eventually
guess right, and then never change your
guess after that (you win in the limit). Is it
possible to win in the limit even after 100
wrong guesses?

5. Can you come up with a guessing strategy
that will always win in the limit?

46

2

8

1 73

…

Another guessing game
The teacher thinks of a set that is either

• All the whole numbers, or

• All but one of the whole numbers.

The teacher gives clues to the learner as in the
previous game, and the learner has to try to guess
the set.

Same criterion for winning --- eventually guess
right in the limit, i.e., from some point on.

Question: Is there a winning strategy for the
learner?

All numbers…
1 3

5

92
6

4

Wait, all except 2.
Wait, all except 4.
Wait, …

teacher

learner

Yet another guessing game
The teacher thinks of a set that is either

• All the whole numbers, or

• All but one of the whole numbers.

The teacher gives clues to the learner as in the
previous game, and the learner has to try to guess
the set.

Additional rule: If i and j are both in the set, and i
is less than j, then the clue The set contains i will
come before the clue The set contains j.

Question: Is there a winning strategy for Player II
in this game?

1, 2, 3, 4, 5,
6,

All numbers…

Wait, all except
7… I win!!

8 …

teacher

learner

Learning Languages
A child learning a language is
playing the role of the learner in a
more complex variant of this
game.

• A language is a set of
grammatically correct sentences.

• The child will be given clues in the
form of sentences that are in that
set.

• The child will try to figure out what
is in that set (by guessing the
grammatical rules of the
language).

You
shouldn’t
eat sand.

“You shouldn’t eat
sand,” is a

grammatically correct
sentence in the language

I am trying to learn.

I guess verbs following
modal verbs must be in

the infinite form.

Doing science
A scientist trying to understand
Nature is a learner in a game like
this.

• We can think of Nature as the set
of all natural phenomena.

• The scientist tries to figure out
how to predict natural
phenomena.

• Nature provides examples of
phenomena, but never “tells” the
scientist if she’s got it right. Einstein’s theory of

gravity is how to
predict natural

phenomena.

Newtonian physics
is how to predict

natural
phenomena.

Hmm…

Formalization of Learning
We want to formalize learning in a tractable way so that we can study it and
prove things about it. We’ll take as the underlying motivating scenario a child
learning a language in an idealized setting.

A learning paradigm consists of the following:

� A learner.

� A thing to be learned.

� A teacher or presentation of the thing to be learned.

� The hypotheses about the thing to be learned postulated by the learner.

� A criterion for success or identification.

Formalization of Learning
Human language is messy and full of words. We are going to make some
simplifying assumptions so that we can make a rigorous study. Here are two of
the big ones:

a language ≡
a set of natural

numbers
1.

rules of

grammar

computer

program≡2.

Language = set of numbers
How does this work? Let’s just start with English and do some encoding of just words…

� We can assign to each letter of the alphabet a natural number:

� So, each word can be written as a string of numbers:

� We can use the fundamental theorem of arithmetic to turn this string of numbers

into a single unique number representing that word:

Language = set of numbers
Now, sentences:

� We have a number for each word.

� Now, we can use the same FTA trick to construct sentences:

� So each sentence* has a unique number assigned to it via this scheme.

� The collection of grammatically correct sentences in the English language is a set of

numbers.
* in fact, any string of letters and spaces…

Grammar = Program
The motivation for this assumption is the following:

� Real languages aren’t just arbitrary strings of symbols in some alphabet.

� There are rules of grammar and spelling, for example.

� Learning a language doesn’t mean memorizing all the grammatically correct sentences; this is
impossible anyway --- languages (as sets of sentences) are infinite!

� Learning a language means learning the rules of grammar, vocabulary, and spelling so that
sentences can be constructed to express what we feel, think, want to ask, etc.

� We really only want to think about how to learn what might be a “real” language by figuring out the
rules of the grammar that govern that language.

To completely understand this assumption, we will need to make a foray into the
world of computability theory.

Turing Machines
A Turing Machine is a theoretical computer formulated by Alan Turing in the 1930’s.

Turing Machines

TAPE
BLANK ALPHABET SYMBOLS q2

READ/WRITE HEAD

STATE

QUINT
q4

Turing Machines: the fine print

Turing Machines: the fine print

Turing Machines: the fine print

Turing Machines: the fine print

(Patience, young Padawan… the time for examples is near.)

Turing Machines: the fine print

q0

The initial state of a Turing Machine has

• the input written on the tape,

• the machine head at the first non-blank cell,

• the machine head in the initial state, q0.

INPUT

Turing Machines: example 1

q0

B B 1 1 0 0 0 1 B B

Turing Machines: example 1

q0

B B 1 1 0 0 0 1 B B

Turing Machines: example 1

q0 q1

B B 0 1 0 0 0 1 B B

Turing Machines: example 1

q1

B B 0 1 0 0 0 1 B B

Turing Machines: example 1

q1

B B 0 1 0 0 0 1 B B

Turing Machines: example 1

q1 q1

B B 0 0 0 0 0 1 B B

Turing Machines: example 1

q1

B B 0 0 0 0 0 1 B B

Turing Machines: example 1

q1

B B 0 0 1 0 0 1 B B

Turing Machines: example 1

q1

B B 0 0 1 1 0 1 B B

Turing Machines: example 1

q1

B B 0 0 1 1 1 1 B B

Turing Machines: example 1

q1

B B 0 0 1 1 1 0 B B

Turing Machines: example 1

qH

B B 0 0 1 1 1 0 B B

OUTPUT

Bit-flip

program

Turing Machines: example 2

Turing Machines: example 3

Run this machine on input 253.

What is the output?

Run this machine on input 46.

What is the output?

Pick another number and try it…

What is the machine doing?

Turing Machines: example 4

What is the behavior of this machine?

--Try it on “bba”

--Try it on “abba”

--Try some more words…

What’s it doing?

TMs as functions
We can think of a TM as defining a function on natural numbers. We say that the TM computes

the function.

TMInput Output

Function is

undefined.

For the rest of our discussion, we’ll only consider TMs on numerical alphabets defining functions on the natural numbers.

Indices of programs
Each one of these machines is described by its set of
quints.

Each quint is, in the end, just a string of symbols.

We can use the same coding trick we used for words and
sentences to encode a Turing Machine as a single number!

This can be done carefully so that each program has a
number, and each number corresponds to a (perhaps
nonsensical) TM.

The number that encodes a particular TM in this way is
called the index or Gödel code of that program.

TMs as functions
We can think of a TM as defining a function on natural numbers. We say that the TM computes

the function.

TMInput Output

Natural numbers The index of the TM.

TMs as functions

TM
1. Does every TM define a function?

2. Does every function have a TM?

3. For the functions that have TMs,

are they unique?

?

Answer to question 1: Yes! (Though possibly not a total function.)

Answer to question 2: No! (We’ll come back to this.)

Answer to question 3: No!

Q3: Are TMs unique?

Dummy quint.

Theorem. If a function

can be computed by a

TM, then there are

infinitely many TMs

that compute that

function.

No.

Q2. Does every function have a TM? No.

What functions are defined by TMs?

Any function that can be computed on any computer of any kind can be computed by a TM.

Church-Turing Thesis. The class of functions that can be computed by a TM is the same as the

class of “effectively calculable” functions.

This is very handy… it means that to demonstrate that a function is computable by a TM, all we have to

do is give an algorithm for computing it, we don’t have to actually find a set of quints to do it!

What functions are defined by TMs?

What functions are defined by TMs?

What functions are defined by TMs?

What functions are defined by TMs?

Definition: A function is called partially computable if can be computed by a TM.

Definition: A function is called computable if it is total and can be computed by a TM.

Computable

Partially

computable

Which functions are partially computable?

