PROJECT: CONSISTENCY

ALGORITHMIC LEARNING THEORY, SUMMER 2014

1. INTRODUCTION

A learner that conjectures a grammar for a language that is not consistent with
what he or she already knows (from the text) to be in the language would be a
foolish learner indeed. As an extreme example, imagine a learner that has seen
the following text: 1,2,4,6,.... It would be foolish for him to offer as a guess,
“The set of all even numbers.” Learners that do not do such silly things are called
consistent learners. In this project, you’ll investigate how requiring that a learner
be consistent affects the classes of languages that they can learn.

2. COMPUTABILITY THEORY: LEMMAS AND EXERCISES

Lemma 1. Let h(j, k) be a total, computable function of two variables. For each
Jj €N, define f;(k) = h(j, k). Then there is a computable set S C N such that for
all j, f; is not the charactaristic function of S.

Exercise 1. Let L; = {(i,z) | x € W;}. Find a computable function h so that for
each i, h(i) gives an index for L;.

3. LEARNING THEORY I: IDENTIFICATION, LEMMAS AND EXERCISES

Lemma 2. For each i € N, define L; = {(i,z) | x € W;}, and let L = {L;};en.
Then L is identifiable. Moreover, L is identifiable by a computable learner.

4. LEARNING THEORY II: LIMITATIONS

Definition 1. Learning function @ € F is called consistent if for all 0 € SEQ,
rng(o) € Wo()-

Proposition 1. [F"] = [F].

Proposition 2. Let ¢ be a consistent computable learning function. If p identifies
L, then L contains only recursive languages (i.e., L C RErgc).

Proposition 3. There is a set of computable languages L C RErgc that is iden-
tifiable by a recursive learner, but not by a consistent recursive learner.

