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The Rust language was created to provide safe low-level systems programming. There is both industrial
and academic interest in the problem of (semi-)automatically translating C code to Rust in order to exploit
Rust’s safety guarantees. We study the effectiveness and limitations of existing techniques for automatically
translating unsafe raw pointers (in Rust programs translated from C) into safe Rust references via ownership
and lifetime inference. Our novel evaluation methodology enables our study to extend beyond prior studies,
and to discover new information contradicting the conclusions of prior studies. We find that existing translation
methods are severely limited by a lack of precision in the Rust compiler’s safety checker, causing many safe
pointer manipulations to be labeled as potentially unsafe. Leveraging this information, we propose methods
for improving translation, based on encoding the results of a more precise analysis in a manner that is
understandable to an unmodified Rust compiler. We implement one of our proposed methods, increasing the
number of pointers that can be translated to safe Rust references by 75% over the baseline (from 12% to 21% of
all pointers).
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1 INTRODUCTION

The Rust programming language targets the same low-level system software domain as C, but with
much stronger memory and thread safety guarantees. Rust has been used for building operating
systems, web browsers, and garbage collectors [Anderson et al. 2015; Levy et al. 2015; Lin et al.
2016], and is being adopted by projects with large C/C++ codebases (e.g., Firefox [Bryant 2016],
Linux [Corbet 2021; Elhage 2020], and Android [Stoep and Hines 2021]). However, most existing
critical software infrastructure predates Rust and is written in C, and thus suffers from C’s lack of
safety guarantees; this fact motivates the goal of (semi-)automatically porting C programs to Rust.
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Existing C to Rust translators (e.g., c2rust [Immunant inc. 2020]) heavily rely on unsafe blocks,
which disable safety checks for annotated code. To maximize safety, unsafe usage should be
kept to a minimum. However, fully automated translation to completely safe Rust is difficult, if
not impossible: Rust uses an ownership-based type system [Boyapati et al. 2002, 2003] to enforce
memory and thread safety, and C programs are not usually written with ownership-based semantics.
A more realistic goal, then, is (1) to maximize the amount of safe Rust code that is automatically
translated from C and (2) to provide developers insight into the reasons why remaining code is
marked unsafe, so that they can manually rewrite unsafe parts.

In this paper, we build on prior C to Rust translation work by focusing specifically on the transla-
tion of unsafe pointers to references. We observe that this translation’s succcess is highly dependent
on ownership and lifetime inference. Our goal is to understand the current limitations of

ownership and lifetime inference, in the context of translating unsafe raw pointers to

verifiably safe references.We offer new insights into the (lack of) effectiveness of existing trans-
lation techniques, demonstrate that lack of effectiveness with empirical evidence, and based on
that evidence offer suggestions for overcoming these limitations. We also implement and evaluate
one of our suggestions.
In Section 3, we introduce a new program tranformation technique called pseudo-safety which

enables this entire study. The obstacle for prior studies is that pointers may be marked unsafe for
multiple reasons unrelated to ownership and lifetimes, such as pointer arithmetic or unsafe casts.
These confounding factors limit prior studies to only the small percentage of pointers that are not
influenced by those confounding factors. Pseudo-safety removes these confounding unsafe behav-
iors from Rust programs, while preserving the static aliasing and lifetime relationships relevant to
ownership and lifetime inference, though not the dynamic behavior of the original program. This
transformation allows us to answer questions about the effectiveness of ownership and lifetime
inference independently of other factors. Moreover, even if solutions to these confounding factors
are found, these solutions will still be limited without improved lifetime and ownership inference
methods. Thus, pseudo-safety allows us to evaluate and discover the limits of any technique for
translating unsafe code to safe code. However, pseudo-safety deliberately does not preserve the

program semantics, so it is intended as a tool for evaluation rather than a basis for a C to Rust
translation tool.
In Section 4, we study the effectiveness of ownership and lifetime inference on pseudo-safe

Rust programs translated from C, based on a previous, more limited study by Emre et al. [2021].
Our results show that, contrary to prior conclusions, the vast majority of raw pointers cannot
be automatically made into safe references. This insight was possible because, unlike Emre et al.,
pseudo-safety allows us to extend our study to include pointers involved in other unsafe behaviors.
In Section 5, we investigate the reasons behind our results, and show that type equality, and

more specifically the imprecision of Emre et al. [2021]’s interpretation of Rust’s typechecking
algorithm, is responsible: many pointers are put into type equivalence classes by their analysis,
and if any one pointer in a class cannot be made safe, then none of them can. For example, in our
largest benchmark (tmux), having only 4 pointers marked unsafe is enough to force 85% of the 4,635
pointers in the program to be marked unsafe. In Section 6, we investigate the effect of more precise
analyses on the type equality problem, specifically equality-based (the baseline), subset-based,
field-sensitive, and context-sensitive analyses. We show that field sensitivity does not substantially
improve over the baseline, however subset-based and context-sensitive analyses each individually
improve the baseline by an order of magnitude.
In Section 7, we propose methods for incorporating our findings into an improved C to Rust

translation. Rather than modifying the Rust compiler to be more precise, which has major short-
comings, our proposed methods are based on program transformations and thus compiler-agnostic.
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We implement one of our proposed methods in Section 8, wherein we encode the results of a
subset-based taint analysis in a Rust program. We evaluate our transformation via pseudo-safety
in Section 9, and show that it increases the number of unsafe pointers for which we can infer
ownership and lifetime information by 75% over the baseline (an increase from 12% to 21%). We also
release our implementation of the transformation, limit studies, benchmarks, and pseudo-safety
transformation as an artifact for evaluation [Emre et al. 2023]. Future work involves implementing
and evaluating the remaining proposed methods to determine their effectiveness.

2 BACKGROUND AND RELATEDWORK

Rust. Rust’s typesystem is based on ownership and borrowing, which statically guarantees
memory safety [The Rust Project 2021]. Central to borrowing are references, which borrow some
value for a fixed duration of time. References are identical to pointers in a dynamic semantics, but
are statically augmented with additional lifetime information, which encodes how long the value
the reference refers to is live. Lifetimes statically, conservatively, and soundly encode how long the
object the reference references is live. Rust’s borrow checker computes lifetime information and
enforces two safety constraints on them: (1) it prohibits dereferencing references which outlive the
objects they refer to, and (2) prohibits having multiple references to the same object if at least one
of these references is mutable, and if the references’ lifetimes overlap. While references statically
guarantee memory- and thread-safety, their conservative nature means that safe code can still be
rejected, leading to an occasional lack of expressiveness. Rust additionally supports raw pointers, or
just pointers in this paper. Raw pointers are more expressive, as they lack lifetime information and
allow dereferencing at any point. However, this dereferencing is inherently unsafe, so the compiler
forces unsafe to be used around associated code.

Translating C to Rust. Citrus [Lesinski 2018], Corrode [Sharp 2020], and c2rust [Immunant
inc. 2020] translate C to Rust using a purely syntactic translation scheme, and wrap the resulting
translated code in unsafe annotations. In particular for our study, these tools translate all C pointers
to unsafe Rust pointers, and thus do not tackle the issue of translating C to safe Rust.
Emre et al. [2021] classify and quantify the unsafety in Rust programs translated from C by

c2rust. They find that raw pointer dereferences account for most uses of unsafe. They also clasify
the causes of raw pointers into the following categories, based on the Rust reference [The Rust
Project 2021] and their inspection of the code emitted by c2rust: casts (and void pointers), use
in external APIs and unions, use in mutable global variables, inline assembly, pointer arithmetic,
calling malloc, and a lack of ownership and lifetime information. We use this classification when
devising pseudo-safe transformations. They then take the output of c2rust, as well as some
semantic rules from Oxide [Weiss et al. 2020], and leverage the Rust compiler’s type and borrow
checkers to automatically infer ownership and lifetime information for a subset of the raw pointers,
specifically those that have no other source of unsafety (e.g., pointer arithmetic, unsafe casts, global
initialization, C-style unions, or being involved in an extern function call). We provide a summary
of how the tool they build (Laertes) works at the end of this section. They find that a majority
of these raw pointers can have their ownership and lifetime information inferred, and thus can
be transformed into safe references. However, this subset of raw pointers turns out to be a small
percentage of the total number of raw pointers (11% on average), because their study is limited by
other causes of unsafe pointers affecting most of the pointers. We show in Section 4 that this subset
is not representative of the whole, and that even if all other sources of unsafety can be removed,
their technique is unable to infer ownership and lifetime information for the vast majority of raw
pointers. We build directly on top of Emre et al.’s work.
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Ling et al. [2022] take an alternative approach, wherein 220 ad-hoc rewrite rules are applied
to c2rust’s output. These rules are intended to make the Rust code more idiomatic, and in so
doing, remove some uses of unsafe. However, while they mention that 22 of these rules do not
preserve program semantics, these 22 rules are not disclosed, nor do they indicate which behaviors
are broken. Their evaluation indicates that over 95% of functions are made safe, but with a major
caveat: a function marked safe may still call functions that execute unsafe code either directly or
transitively, because they push the unsafe keyword into function bodies. As such, it is questionable
how safe this generated code actually is; unsafety may simply be being pushed around in a manner
which minimizes the use of the unsafe annotation, but without improving the inherent unsafety in
the program. They do not provide any evaluation to this effect, though it is known that transitive
calls can can hide lots of unsafe behavior [Emre et al. 2021].

Enforcing Pointer Safety in C.. Necula et al. [2005] extend C to introduce safe pointers in CCured.
If a pointer cannot statically be deemed safe by an equality-based analysis, it is instead checked
dynamically. Elliott et al. [2018] introduce casts backed by possible runtime checks in Checked
C, where the casts assert related information like nullability or array bounding. Machiry et al.
[2022] improve on these works by using casts to enforce boundaries between safe and unsafe
pointers. Checked C and works based on it do not enforce complete memory safety and are not
ownership-based, thus they are not directly applicable to the goal of translating C to safe Rust; they
do not compose with Rust’s existing ownership-based memory model (necessitating modification
to Rust itself), and they do not completely enforce memory safety. Cyclone [Jim et al. 2002] is an
extension to C that guarantees memory safety by static verification of liveness conditions using
region-based memory management, and by dynamic bounds checking. Cyclone’s approach is
similar to how Rust maintains memory safety using its ownership and lifetime system to ensure
reference validity, and bounds checking to validate array accesses.

Pointer Analysis. We use pointer analyses to determine how unsafety spreads across the program.
Some seminal work on flow-insensitive pointer analysis is most relevant to us, along with related
improvements. Andersen [1994] presents a reduction from subset-based flow-insensitive points-
to analysis to an iterative fixpoint problem based on the transitive closure of a graph. Under
Andersen’s analysis, the points-to set of a pointer 𝑝 subsumes the points-to sets of all values
assigned to 𝑝 , independent of the program’s control flow, hence it is flow-insensitive. Steensgaard
[1996] presents a faster (in almost linear time) but imprecise pointer analysis based on type equality.
As mathematical equality lacks a direction, Steensgaard’s analysis interprets p := q and q := p as
the same constraint, whereas Andersen’s analysis distinguishes between these two by deriving
ptsto(𝑝) ⊆ ptsto(𝑞) for the former and the flipped version for the latter. Here, ptsto denotes a
mapping from pointers to their points-to sets, so it is equality-based. Rust’s type checker effectively
performs a Steeensgaard-style analysis to propagate unsafety among pointers.
Pearce et al. [2007] present a way to encode function arguments and parameters in a subset

constraint system that can express Andersen-style and Steensgaard-style analyses. In Pearce et
al.’s encoding, an 𝑛-ary function 𝑓 is represented with a constructor 𝜆(𝑝1, . . . , 𝑝𝑛, 𝑟 ) ⊇ 𝑓 , where
the variables 𝑝1, . . . , 𝑝𝑛 denote the parameters of the function (hence are contravariant), and 𝑟

denotes the return value of the function (hence is covariant). Each call site r = f(a1, ..., an)

also corresponds to a constructor 𝜆(𝑎1, . . . , 𝑎𝑛, 𝑟 ) ⊆ 𝑓 where 𝑎1, . . . , 𝑎𝑛 are the arguments at the call
site, and 𝑟 is the location for the return value at the call site. We make use of Pearce’s encoding to
handle function pointers in our pseudo-safety transformation.

Methods of Evaluating Pointer Analyses. Existing work comparing pointer analyses with different
levels of precision is split between two approaches: direct measures such as points-to set sizes,
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and the effectiveness of a client analysis. Here, we present representative works that use either
method. Shapiro and Horwitz [1997a,b] use average and total points-to set sizes to compare an
Andersen-style analysis to a Steensgaard-style analysis. Shapiro and Horwitz [1997a] use the
effectiveness of several client analyses (program slicing, program dependency graph construction,
liveness analysis) to evaluate pointer analysis sensitivity. Kastrinis and Smaragdakis [2013] use
average points-to set sizes to measure the effect of context sensitivity. Guyer and Lin [2003]
measure effectiveness in terms of the number of alarms raised by a client vulnerability analysis.
Kastrinis and Smaragdakis [2013]; Lhoták and Hendren [2006]; Smaragdakis et al. [2014] use call
graph construction and downcasting safety as client analyses when evaluating the effectiveness of
different context-sensitive analyses.

A Brief Explanation of Laertes’s Core Algorithm. Laertes [Emre et al. 2021] is a tool that infers
lifetime and ownership information by iteratively querying the Rust compiler and resolving compiler
errors. It operates on pointers that are unsafe only due to a lack of lifetime information (see our
discussion of Emre et al. [2021] on page 3 for other causes of unsafety in pointers that they consider).
Laertes starts with optimistic assumptions about all pointers it operates on: (1) all pointers can be
converted to safe references, (2) all references are borrowing, and (3) Every lifetime in function
and type signatures is independent (has a different type variable). Laertes rewrites the pointers to
references under these assumptions. Then, it invokes the Rust compiler as an oracle to invalidate
the incorrect assumptions in a loop:
𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐼𝑛𝑓 𝑜 ← [lifetimeFacts : ∅, owning : ∅, raw : ∅]
program← rewriteProgram(pointerInfo, originalProgram)
errors← runRustCompiler(originalProgram)
while errors ≠ ∅ do

fixes← resolveErrors(errors)
pointerInfo← propagateFixes(pointerInfo, fixes)
program← rewriteProgram(pointerInfo, originalProgram)
errors← runRustCompiler(program)

resolveErrors takes the compiler errors, and applies heuristics to determine whether to make
some pointers unsafe (raw pointers) or owning (Box<T>), and whether to derive new lifetime facts.
propagateFixes performs a taint analysis to propagate the unsafety and ownership information
to affected pointers; Laertes implements this by modeling the spread of unsafety using an equality-
based (Steensgaard-style) analysis, and the spread of ownership using a subset-based (Andersen-
style) analysis. These analyses emulate how unsafe and owned pointers spread through the type
system, and are based on the semantic rules from Oxide [Weiss et al. 2020] that Emre et al. use.
We give examples of the ramifications of this analysis further in Section 7. pointerInfo holds the
pointer unsafety, ownership, and lifetime facts. rewriteProgram rewrites the program using these
facts. Eventually, the loop terminates; worst-case, all pointers are made unsafe, yielding the original
program.

3 INTRODUCING PSEUDO-SAFETY

Rust supports two mechanisms to refer to memory: safe references and unsafe raw pointers. All
C pointers are translated to raw pointers by c2rust, and raw pointers can only be dereferenced
in unsafe code. Laertes [Emre et al. 2021] takes c2rust-translated code, and attempts to auto-
matically transform pointers into safe references via ownership and lifetime inference. However,
Laertes is inherently restricted to raw pointers that are unsafe exclusively due to a lack of owner-
ship and lifetime information, excluding those involved in pointer arithmetic, unsafe casts, and
other confounding factors (we cover the list of causes Emre et al. consider in Section 2). This limits
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Laertes’ applicability to only around 11% of pointers. Pointers marked unsafe for other reasons are
also unsafe due to lack of ownership and lifetime information, that is, even if those other factors
are removed these raw pointers would still need something like Laertes to be transformed into
safe references. It is an open question how well ownership and lifetime information can be inferred
for all raw pointers, rather than just the small subset that Laertes can handle.

In order to answer this question we have developed a technique called pseudo-safety1. The idea is
to rewrite a Rust program (translated from C via c2rust) to replace unsafe pointer behaviors with
substitutes that preserve the static pointer relationships relevant to Rust’s type and borrow checkers,
but not the runtime behavior of the program itself. In other words, we simulate fixing all other
causes of pointer unsafety in order to focus on the question of inferring ownership and lifetimes. In
the rest of this section we detail the program properties that we preserve and describe the rewrites
that handle each extraneous cause of unsafety. All rewrites in this section are implemented with
c2rust’s refactoring tools and Laertes.

Properties to Preserve. Rust’s safety checks hinge on object lifetimes and aliasing, and our rewrites
preserve the data flow information of three related program properties: aliasing, object lifetimes,
and provenance. Our rewrites remove unsafety related to pointers but not necessarily other causes
of unsafety (e.g., global mutable variable access), in order to keep our rewrites minimal. These
rewrites preserve the number of unsafe pointer declarations and dereferences, and so they do not
fundamentally change the program from the perspective of pointer use.

More specifically, for a given expression 𝑒 , we rewrite it to 𝑒 ′ and preserve the following properties
as checked by the Rust compiler:
• The lifetime of the result of 𝑒 ′ is same as the lifetime of the result of 𝑒 .
• If an object is used in the computation of 𝑒 , it is also used in the computation of 𝑒 ′, preserving
the uses of objects at each program point.
• If the result of 𝑒 is a pointer, it points to the same memory region as the result of 𝑒 ′. For this
purpose, we use the borrow checker’s informal notion of regions where each heap allocation,
variable, and field belongs to a separate region, and members of an array belong to the same
region. We consider all pointers derived from a pointer 𝑝 using pointer arithmetic to point to
the memory region that 𝑝 points to. So, aliasing and provenance of objects are preserved.

We ensured these properties for each rewrite manually, and are planning to release our explanation
for how each specific rewrite preserves these properties as part of our artifact.

Although we preserve these properties, we do not preserve the dynamic behavior of the program,
that is pseudo-safety is not expected to produce a program with the same run-time behavior, and it is
intended only as a limit study tool.

Rewriting Pointer Arithmetic. Any pointer subjected to pointer arithmetic must necessarily be
raw. Pointer arithmetic is performed by arr.offset(i), which is equivalent to the C expression
arr + i. To preserve the properties in Section 3, we translate the unsafe expression arr.offset(i)

to the safe block of expressions {i; arr} (i.e., compute i then compute arr, returning the value of
arr). While the dynamic semantics are different (and computation of i can be optimized out by
the compiler), this block still performs the computation of both arr and i so their original static
lifetimes are preserved (at least up until borrow checking, which happens before any optimization
stage). Similarly, the result of this expression still depends on arr, so aliasing and origin point
information is preserved. The array offsets coalesce into a single reference after our transformation,

1We call our technique pseudo-safety because it replaces unsafe pointer uses for reasons other than lack of lifetimes/own-
ership (hence safety) with a substitute that is not semantically equivalent but preserves the data flow properties we are
interested in (hence pseudo-).
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and none of the analyses we consider are array index-sensitive. So, we do not need to reconstruct
something like &arr[i].
We also consider the related expressions of pointer difference and array-to-pointer conversion.

Pointer difference is performed by a.offset_from(b), equivalent to C’s a - b. We rewrite this as
the expression block {a; b; 0}, which maintains that both a and b are used and must be alive. We
use 0 as a substitute for the actual difference between the two pointers, because the value does not
affect any compile-time lifetime properties. We rewrite array-to-pointer conversion as returning a
pointer to the first element of the array. For example, arr.as_mut_ptr() (which returns a pointer to
arr) is rewritten as (&mut arr[0] as * mut T), where T is the element type of the array. While this
rewrite loses precision for array index-sensitive analyses, array index-insensitive analyses (such as
the ones we use here) maintain their precision.

Stubs for External Functions. The Rust compiler cannot reason about external function definitions,
hence pointers passed to and returned from such functions give problems for ownership and
lifetime inference. We replace each external function with a function implemented in Rust. Per the
behavior of the C linker, we want to preserve having a single function definition for all external
functions with the same name. As such, we generate an empty stub for each uniquely-named
external function declaration. The body of the stub contains an infinite loop, which has the bottom
type in Rust—this fact allows us to accommodate any return type. For example, we generate the
following stub for C’s memcpy function:

pub unsafe extern "C" fn memcpy (* mut c_void , * mut c_void , size_t) -> *

mut c_void { loop {} }

The stub has only loop {} in the body to allow any return type, optimistically assuming that the
actual externally declared function’s signature matches what the analysis derives. We preserve the
extern "C" linkage, but it is not used by Laertes. As no code in the body links the parameters to the
return type, the stub can be rewritten by Laertes to use references in a manner consistent with
all of the function’s uses. This scheme gives us the most optimistic possible rewrites for unsafe
pointers interacting with external functions.

Rewriting Casts with Lifetime-Preserving Substitutes. Raw pointers can be freely cast between dif-
ferent types. However, Rust does not permit casting between references. Removing casts altogether
would alter the provenance of some pointers, since casts establish new pointers. To simulate casts
in safe code, we rewrite casts between unrelated types into calls to a function pseudocast that we
define as:

pub fn pseudocast <'a,'b:'a,T:'b,U:'a>(_:T) -> U { loop {} }

The lifetime annotations of pseudocast specify that the lifetime of the function output is
contained within the lifetime of the function input, thereby preserving the relevant properties we
care about. As a caveat, if there is a cast from a non-pointer to a pointer we rewrite the cast but do
not track the provenance of the non-pointer leading into the cast.

Rewriting Global Variable Initializers. Safe Rust code does not permit global variable initializers to
create heap-allocated values. We rewrite unsafe global initializers into global assignments contained
in newly created public functions that are never called (which does not affect the flow-insensitive
analyses performed by the rewrite tools and the compiler) and instead initialize global variables
with default values (all of the types in the programs translated from C can be default-initialized).
This scheme is similar to rewriting global variables to be initialized with commonly used APIs
such as lazy_static [The Rust Project 2022a] or OnceCell [The Rust Project 2022b], which perform
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thread-safe lazy initialization. We generate new public functions instead of using these APIs in
order to generate code that is simpler and easier to analyze.

Rewriting Unions to Structs. C-style unions allow type punning in an unsafe manner and also
lose pointer provenance for their members. We rewrite C-style unsafe unions into structs, and
rewrite each union initializer to initialize the other struct members to default values. This rewrite
breaks the expected runtime behavior of programs that use unions for type punning or physical
subtyping, but it preserves the properties outlined above.

Inline Assembly. C programmers use inline assembly code to implement low-level optimizations
or to access hardware capabilities. In order to simulate a translation of inline assembly to safe code,
we treat inline assembly regions as unique functions that take all associated variables by reference.
For example, if we have an inline assembly region llvm_asm!(... : "r" a, : "=r" b) that has a as
an input and b as an output, we create a new function fn f(&mut a:A, &mut b:B) {} where A and
B are the types of a and b respectively, then we rewrite the inline assembly region into the function
call f(&mut a, &mut b). This rewrite allows us to preserve the constraint that these variables need
to be accessed mutably at this point of the program while not constraining the exact semantics of
the inline assembly code.

Limitations. Pseudo-safety emulates only low-level rewrites that do not change data flow facts
between pointers in the program. It does not account for potential translation schemes that might
perform higher-level transformation (e.g. creating shims for functions, using a different API for
external functions, or eliminating global variables). Specifically, we do not consider (1) using
Rust libraries with different conventions to replace external functions; (2) introducing locks or
synchronization mechanisms to guard global variables; or (3) reorganizing the program to abide by
the lifetime restrictions that C programmers do not care about (e.g., using a variable after moving
its value to another variable). This is not a limitation in terms of making a program safe, but a
limitation in terms of not modelling some potential higher-level code transformations.

Our method also has limitations around handling function pointers that hold values coming from
sources with different lifetime parameters. We extend Laertes to use lambda constructors [Pearce
et al. 2007] in its pointer analyses in order to support function pointers. Function pointer types in
Rust do not encode lifetime constraints; e.g. we cannot have a function type with where, such as in fn

<'a, 'b>(&'a i8) -> &'b i8 where 'a : 'b. As a result, our method does not handle cases where
functions with different lifetime constraints flow into the same function pointer. We encountered
this problem in two of the benchmarks used by Emre et al. [2021] (optipng and snudown), and so
we exclude them in our evaluation.

Pseudo-safety transformation on an example. Fig. 1 shows how pseudo-safety transformations are
used in a code snippet taken from one of our corpus programs (libcsv). The irrelevant parts of the
function definition are pruned for the sake of brevity. Fig. 1a shows the code snippet before the
transformations. The csv_fwrite2 function uses 3 causes of unsafe pointers besides lack of lifetime
information (each of the causes is marked in bold):
(1) It calls fputc (an external function declared on line 2) and passes it a pointer.
(2) The expression csrc.offset(1) on line 18 performs pointer arithmetic.
(3) There is an unchecked type cast from * const c_void to * const u8 on line 10. This cast

cannot be converted to a cast between references.
By applying the pseudo-safety transformations, we removed these causes of unsafe pointers

while maintaining pointer provenance (modulo array indexing), yielding the code snippet in Fig. 1b.
Each pointer use was addressed by:
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1 extern "C" {

2 fn fputc(_: i32 , _: *mut FILE)

3 -> i32;

4 }

5 unsafe fn csv_fwrite2(

6 fp: *mut FILE ,

7 src: *const c_void ,

8 mut src_size: usize) -> i32 {

9 let mut csrc =

10 src as *const u8;

11
12 while src_size != 0 {

13 if fputc(*csrc as i32 ,fp)==-1{

14 return -1;

15 }

16 src_size =

17 src_size.wrapping_sub (1);

18 csrc = csrc.offset (1);

19 }

20 return 0 as i32;

21 }

(a) Code before the pseudo-safety rewrites.

fn fputc(_: i32 , _: *mut FILE)

-> i32 { loop { } }

unsafe fn csv_fwrite2(

fp: *mut FILE ,

src: *const c_void ,

mut src_size: usize) -> i32 {

let mut csrc =

pseudocast <*const c_void ,

*const u8 >(src);

while src_size != 0 {

if fputc(*csrc as i32 ,fp)==-1{

return -1;

}

src_size =

src_size.wrapping_sub (1);

csrc = { (1); csrc };

}

return 0 as i32;

}

(b) The code after the pseudo-safety rewrites.

Fig. 1. An example code snippet from the libcsv benchmark before and after applying the pseudo-safety

transformations.

(1) Converting fputc to a function stub with a body that doesn’t compute anything (line 2), so it
is no longer externally-defined.

(2) Converting the pointer arithmetic to an expression that evaluates the index then returns the
source pointer (line 18).

(3) Converting the cast to a call to our pseudocast function which can be rewritten to a call
involving reference types rather than pointers (line 10).

The code after the transformations (Fig. 1b contains no causes of unsafe pointers other than
lack of lifetime and ownership information. Now we can use the snippet above to evaluate lifetime
inferencemethods such as the one in Laertes, and see if they can infer proper lifetimes for src under
the assumption that other causes of unsafe pointers can be removed through local transformations.

4 EVALUATING LAERTES IN THE LIMIT

In this section we evaluate Laertes from Emre et al. [2021] on a set of c2rust-translated programs
which had our pseudo-safety transformations applied. Laertes attempts to automatically transform
raw pointers into references for those raw pointers whose unsafety depends solely on the lack
of ownership and lifetime information, and it is the most advanced method for doing so in the
current state of the art. Since pseudo-safety guarantees that these are the only possible reasons for
pointer unsafety, Laertes can theoretically handle all raw pointers in our benchmarks (unlike the
original study by Emre et al. [2021] that could only handle ~11% of raw pointers). Our research

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 94. Publication date: April 2023.



94:10 Mehmet Emre, Peter Boyland, Aesha Parekh, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf

question is: RQ1: How many pointers can Laertes make safe when all raw pointers are

made eligible for transformation via pseudo-safety?

Experiment Setup. We use 14 of the 17 programs used by Emre et al. [2021] in our evaluation, as
shown in Table 1. We omit programs optipng and snudown because of the limitation outlined in
Section 3, and we omit libxml2 because Laertes times out on libxml2 when handling all pointers.

We apply the transformations described in Section 3 after the ResolveImports2 step of Laertes.
We use the result of this phase as our baseline. Then, we run the main step of Laertes (called
ResolveLifetimes by Emre et al. [2021]) that uses the compiler as an oracle to derive ownership and
lifetime information.

Experiment Results. Table 1 shows the number of eligible raw pointer declarations (i.e., those
that Laertes can handle) and the number of raw pointer declarations that Laertes transforms
into safe references, both before and after our pseudo-safety transformations. We also measured
the number of raw pointer dereferences; the trends are similar, and so we omit them for space.
Emre et al. [2021] report that eligible raw pointers (those with ownership and lifetime as the only
cause of unsafety) are only 11% of the total raw pointers, and we confirm this result with our own
experiment (we report a slightly different figure of 9.5% because we only use a subset of Laertes’
benchmarks). Using pseudo-safety to make all raw pointers eligible increases the number of eligible
raw pointer declarations by an average of 10.5×. We also see that while 93% of eligible raw pointer
declarations can be made safe before pseudo-safety is applied (consistent with the results reported
by Emre et al. [2021]), only 12% of eligible raw pointer declarations can be made safe afterwards.
This means that the vast majority of raw pointer declarations cannot be inferred by Laertes, even if
all confounding factors are removed (i.e., the cause of unsafety is limited to ownership and lifetime
information). We investigate why in the next section.

5 TYPE EQUALITY AS A VECTOR FOR UNSAFETY

In this section, we investigate why Laertes is unable to transform a significant number of raw
pointers into safe references. Laertes’s view of the Rust typechecker is equality-based, meaning
that raw pointers are placed into type equivalence classes; if any raw pointer in a given equivalence
class is marked unsafe (e.g., because ownership and/or lifetime cannot be inferred for it), all raw
pointers in the same class must also be marked unsafe, even if Laertes can infer ownership
and lifetime information for them. We conjecture that this unsafety tainting effect is the culprit
behind Laertes’ lack of success. To test this conjecture, we measure statistics for the raw pointer
equivalence classes in our pseudo-safe benchmarks.
Fig. 2a shows the relative sizes of the equivalence classes in each benchmark. Each column is

a benchmark, a column contains one mark for each raw pointer type equivalence class, and the
placement of a mark on the y-axis indicates the percentage of raw pointers that are in that type
equivalence class. Hence, low marks are small type equivalence classes and high marks are large
type equivalence classes. Having large type equivalence classes means that the unsafety of one raw
pointer can easily spread to many other raw pointers.
We observe that in all benchmarks except grabc and xzoom there is a single equivalence class

that affects more than 45% of the raw pointers. Moreover, the four largest equivalence classes
account for 85% of the raw pointers in all benchmarks; this means that having only four necessarily
unsafe 3 raw pointers is enough to poison 85% of the total raw pointers in the worst case. Moreover,
2ResolveImports step merges duplicate struct and external function declarations in the Rust code that result from the same
header being included in separate translation units in the original C code.
3That is, a pointer that is directly used in an unsafe operation, as discussed by [Emre et al. 2021]. This is in comparison to
pointers that have to be unsafe (a raw pointer) because they have data flow from/to "necessarily unsafe" pointers.
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Table 1. Benchmark programs ordered by Rust lines of code along with raw pointer declarations before and

after our transformations. We report both the number of eligible pointer declarations, and the declarations

made safe by the ResolveLifetimes pass of Laertes [Emre et al. 2021].

Benchmark Lines of code Before pseudo-safety After pseudo-safety

C Rust Eligible Made safe % Eligible Made safe %

qsort 27 39 2 2 100% 4 2 50%
libcsv 1,035 951 18 18 100% 37 25 68%
grabc 224 994 5 5 100% 13 8 62%
urlparser 440 1,114 5 5 100% 79 7 9%
RFK 838 1,415 0 0 – 2 2 100%
genann 642 2,119 0 0 – 73 12 16%
xzoom 776 2,409 0 0 – 29 3 10%
lil 3,555 5,367 23 8 35% 438 34 8%
json-c 6,933 8,430 29 23 79% 325 72 22%
libzahl 5,743 10,896 7 7 100% 457 51 11%
bzip2 5,831 14,011 37 21 57% 227 78 34%
TI 4,643 19,910 0 0 – 866 18 2%
tinycc 46,878 62,569 184 143 78% 1352 207 15%
tmux 41,425 191,964 331 232 70% 4635 468 10%
Total 118,990 322,188 641 464 72% 8537 987 12%

(a) Size of each equivalence class of declared variables

as a percentage of the sum of the sizes of equivalence

classes for each benchmark. The benchmarks are

ordered in terms of total number of variables.

(b) Histogram of pointers in tmux (our largest bench-

mark). The x axis denotes the number of pointers

affected, and the y axis denotes the number of in-

stigating pointers in each bin divided by the total

number of pointers in the program.

Fig. 2. Results of our investigation on aliasing caused by type equality.

all benchmarks have at most 77 equivalence classes containing more than 1 pointer. From these
measurements we see that the underlying issue is type equality, or more precisely, the imprecision
of how Laertes models the Rust typechecker using an equality-based analysis.

In the rest of the paper we investigate the effects of increasing the precision of analyses modeling
the typechecker. However, this means going beyond equality-based analysis and therefore means
that raw pointers will no longer be grouped into equivalence classes.We need ametric for measuring
the impact of unsafety tainting that is independent of equivalence classes. The metric we will use
is a histogram that conveys how easily unsafety taint can be spread among raw pointers. For each
raw pointer R we count the number of other raw pointers whose safety depends on that of R (i.e.,
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the number of raw pointers that will necessarily be marked unsafe if R is marked unsafe); call R the
instigating raw pointer and call the raw pointers whose safety is dependent on R the affected raw
pointers. We then plot a histogram where the x-axis indicates the number of affected raw pointers
and the y-axis indicates how many instigating raw pointers affect that many other raw pointers.
Note that “instigating” vs. “affected” are just terms of convenience: the metric looks at every raw
pointer as a potential instigator and any raw pointer may be affected by some other raw pointer.

Fig. 2b demonstrates this new metric on our largest benchmark, tmux. We see that, for example,
over 80% of instigating raw pointers affect more than 3,500 other raw pointers. That is, if any of
those 80% of raw pointers are marked unsafe, then necessarily at least 3,500 other raw pointers will
also be marked unsafe.

6 INVESTIGATING ANALYSIS PRECISION

In the previous section we showed that imprecision in Laertes’s model of the type system is
responsible for allowing necessarily unsafe raw pointers to spread unsafety to many other raw
pointers. In this section, we perform a limit study to investigate the effects of adding different kinds
of precision in order to determine what kinds of analyses, if any, can mitigate this problem.

The baseline Rust typechecking analysis is equivalent to an equality-based (Steensgaard-style),
field-based4, context-insensitive pointer analysis. We explore three dimensions of precision to make
the analysis more precise: context sensitivity, field sensitivity, and directionality (i.e., going from
an equality-based analysis to a subset-based analysis). To implement these analyses we build on
the pointer analyses in the SVF [Sui and Xue 2016] framework. SVF analyzes LLVM bitcode, so we
first compile Rust programs to LLVM bitcode with all optimizations and overflow checks disabled
to get a program that is as close as possible to the high-level Rust IR (HIR) that Laertes analyzes.
However, there are three important differences between LLVM bitcode and HIR:
• LLVM bitcode is in static single assignment (SSA) form, which creates different versions
of local variables, thus enables Andersen-style (subset-based, field-insensitive) analyses to
have strong updates for local variables a la flow-sensitive analysis. However, Rust HIR can
be transformed to SSA form by a tool so the results still apply.
• LLVM bitcode uses offsets instead of field names when accessing struct fields, which can
cause precision loss for field-based and field-sensitive analyses. To remedy this problem, we
use the type and field index information computed by SVF to restore some missing type
information.
• HIR code is parametric polymorphic but LLVM code is monomorphized. This is not an issue
in our experiments, as the code translated from C does not use generics.

We implement a flow-insensitive dataflow analysis client that uses SVF to build a dataflow graph
containing all top-level pointers (i.e., each global and local pointer variable). We build four versions
of this graph using different levels of sensitivity, each building on top of the previous:
P1 A field-based, equality-based, and context-insensitive analysis, as a baseline model of the

Rust typechecker. We build an undirected data flow graph and merge all nodes that access
the same field (by analyzing GetElementPointer instructions), even on different objects.

P2 A field-sensitive, equality-based, context-insensitive analysis. This is similar to the prior
analysis, but does not merge field access nodes.

P3 A field-sensitive, subset-based, context-insensitive analysis. This adds a directional data flow
graph to the prior level of precision.

4A field-based analysis treats all accesses to the same struct field as accessing the same object [Heintze and Tardieu 2001].
This is in contrast to a field-sensitive analysis. See Section 7.2 for why we consider Rust’s type system to be field-based.
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P4 A field-sensitive, subset-based, context-sensitive analysis. We do the same analysis as the prior
level, but we use pairs of call contexts and program locations as nodes in the data flow graph.

We use four levels of pointer analyses from SVF to build the P1–P4 client analyses. The SVF
equality-based pointer analysis is Steensgaard-style, the SVF subset-based pointer analysis is
Andersen-style, and the SVF context-sensitive pointer analysis is actually a demand-driven flow-
and context-sensitive analysis (SVF does not allow for a flow-insensitive, context-sensitive pointer
analysis; note that the P4 client analysis built on top of SVF is still flow-insensitive). The context-
sensitivity strategy uses the immediate caller of the current function being analyzed as the context.
As most of our benchmarks are libraries, we pick all externally visible functions (all functions
marked pub in the Rust code) as program entry points.

Experiment Setup. We analyze 16 out of 17 benchmarks used in Emre et al. [2021]. We do not use
the libxml2 benchmark because the context-sensitive analysis times out after 48 hours5. All of our
experiments are run on a Intel i7-6600k processor with 32 GiB of memory running Void Linux. The
context-sensitive analysis on tmux used 27 GiB of memory and took 25 hours; the same analysis
for tinycc used 2.8 GiB of memory and took 10 minutes. All other experiments used < 2 GiB of
memory and took less than 5 minutes.

To answer how analysis precision impacts the spread of unsafety, we use the metric described in
Section 4 that looks at each raw pointer as a potential instigator of unsafety and how many other
raw pointers it would force to be unsafe if the instigator is marked unsafe. The smaller the number
of the affected pointers per potential instigator, the better the analysis curbs the spread of unsafety.
We are using “the number of affected pointers” as a proxy for the main metric we are interested in:
the spread of unsafety to other pointers. Existing methods to measure relative precision of pointer
analyses discussed in Section 2 are not helpful to us, so we do not focus on them in our evaluation.

We pose the following research question: RQ2: How does the distribution of affected point-

ers changewith analysis precision?We are interested in howmanymore pointers can be proven
as “well-contained” by increasing analysis precision. That is, how many raw pointers do not affect
many other pointers in the program, when considered as potential instigators. To answer RQ2,
we collect two types of data: (1) how many pointers are “well-contained” (which we define as
affecting at most 1% of the program’s raw pointers), and (2) summary statistics (mean and standard
deviation) of the distribution of affected pointer set sizes for each benchmark and precision level.
We also graphically display this distribution in the style of Fig. 2b.

The context-sensitive analysis considers instances of a pointer in different contexts as separate
pointers, so its results are not directly comparable to the results obtained by context-insensitive
analyses. However, in order to meaningfully compare the sizes of the affected pointer sets across
different precisions we count affected pointers only once no matter how many contexts they appear
in. This raises the question of how to count affected pointers that may appear in the instigator’s
affected set in some contexts but not in others: counting it as affected may be too conservative, but
counting it as not affected may be too optimistic. We compute the metric twice, once under the
conservative assumption and once under the optimistic assumption, and report both results.

Results. Table 2 presents well-containedness data for each level of analysis precision. We observe
that adding field sensitivity (P2) to an equality-based analysis does not significantly improve
precision; the highest increase observed is 4% (in optipng). However, adding directionality (P3)
causes a sudden jump in precision, with the subset-based analysis having more than 90% of the
pointers affect less than 1% of the pointers in 12 out of 16 benchmarks. qsort is an outlier because

5We repeated this experiment also on a computer with 128 GiB memory and an AMD EPYC 7281 processor and it timed out
after a week (168 hours).
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Table 2. Number of total pointers, and percentage of pointers affecting ≤ 1% of pointers. ptrs is the number

of pointer-typed variables in the dataflow graph, and cptrs is the total number of clones of all raw pointers in

all contexts. The remaining columns refer to instigator pointers affecting ≤ 1% pointers under each analysis

precision. some-ctx and all-ctx count a pointer as affected only if it is affected under at least one or all call

contexts, respectively. Results > 90% are marked in bold.

Benchmark ptrs cptrs Percentage of pointers affecting <1% of the pointers
P1 P2 P3 P4:some-ctx P4:all-ctx

qsort 16 109 0.00 % 0.00 % 37.50 % 55.05 % 55.96 %
grabc 1,850 5,076 35.89 % 38.76 % 92.16 % 98.29 % 99.57 %

libcsv 429 1,051 15.15 % 17.25 % 81.82 % 95.91 % 96.96 %

urlparser 1,067 3,767 0.84 % 1.03 % 83.32 % 96.81 % 97.29 %

xzoom 2,584 7,823 31.27 % 33.36 % 92.92 % 97.95 % 98.65 %

robotfindskitten 3,095 2,438 26.20 % 28.72 % 95.32 % 97.70 % 100.00 %
snudown 3,728 8,621 17.95 % 19.21 % 98.85 % 99.22 % 99.99 %

genann 4,108 23,299 25.46 % 27.14 % 93.65 % 98.09 % 98.31 %

libzahl 5,441 34,304 4.43 % 4.52 % 94.16 % 95.20 % 95.40 %

json-c 5,598 19,856 10.29 % 11.97 % 92.69 % 96.12 % 96.25 %

lil 6,144 21,544 14.71 % 16.03 % 91.78 % 96.03 % 96.62 %

tulipindicators 8,376 20,859 13.98 % 14.77 % 93.04 % 99.85 % 100.00 %

bzip2 11,909 37,037 17.03 % 17.65 % 96.84 % 98.52 % 98.54 %

optipng 21,984 77,638 20.37 % 24.46 % 96.77 % 99.61 % 99.63 %

tinycc 28,830 264,811 14.09 % 17.97 % 93.54 % 95.03 % 98.35 %

tmux 77,345 258,662 6.73 % 7.87 % 88.86 % 93.05 % 93.05 %

it has only 12 pointers. Adding context sensitivity (P4) shows that 94% (97% excluding qsort) of the
instigator raw pointers affect less than 1% of the total raw pointers on average (geometric mean).
We also observe that if an unsafe pointer can affect one clone of another pointer, the unsafe pointer
can likely affect all clones of it. So, an analysis that incorporates all three aspects of precision is
crucial for taming unsafety, and it can potentially help identify the remaining “lynchpin” pointers
that spread unsafety even after drastic automatic program transformations.
To get a complete picture, we also look at overall changes in the distributions of affected raw

pointers. We present statistics for the distribution of affected pointers in Table 3. The results of this
experiment agree with the results of our previous analysis of “well-contained” pointers: Both the
mean and the standard deviation of this metric shrink as sensitivity increases, and field-sensitivity
improves the metrics only by a small amount. In the best-case scenario (an analysis with full
precision, and assuming that another pointer is not reachable unless it is reachable in all contexts),
a random pointer does not affect more than 181 other pointers, or merely 20 when excluding tmux.

While summary statistics give a general understanding of the distribution, they may be mislead-
ing [Anscombe 1973]. So, we also investigate the change in the shape of this distribution graphically.
Fig. 3 presents this distribution for each precision level on tmux. For space reasons we present only
the results for our largest benchmark; other benchmarks have similar distributions. Ideally, we
would like to see all pointers binned on the leftmost column, indicating that instigator pointers
generally do not affect many other pointers. As the precision increases, we see a trend towards
the left. At one extreme, ≈ 90% of the pointers can affect almost all pointers under P1. With P3

only 10% of the pointers can affect more than 80% of the pointers. Finally, with P4 only 2% of the
pointers can affect more than half of the pointers. So, our results suggest that an analysis with the
sensitivity choices of P3 is useful. The jump from P2 to P3 suggests that adding directionality is
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Table 3. Summary statistics for number of affected pointers for each instigator pointer, classified by benchmark

and analysis precision. 𝜇 is the mean and 𝜎 is the standard deviation. some-ctx and all-ctx count a pointer

as affected only if it is affected under at least one or all call contexts, respectively.

Program P1 P2 P3 P4:some-ctx P4:all-ctx

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

qsort 7.4 3.9 7.4 3.9 2.2 3.3 0.7 1.2 0.7 1.0
grabc 708.3 553.3 544.8 489.8 10.8 40.6 2.0 6.7 1.3 3.6
libcsv 63.8 49.9 55.1 43.9 3.0 5.3 1.2 2.0 1.1 1.6
urlparser 1049.1 96.7 1044.1 106.5 8.0 18.1 2.0 5.2 1.6 3.2
xzoom 1144.8 810.1 958.1 758.5 9.4 37.5 2.1 7.1 1.6 5.1
RFK 1641.9 1000.5 613.5 440.4 7.7 35.0 2.0 14.2 0.5 2.2
snudown 2497.4 1269.9 2048.8 1191.9 3.9 37.2 1.7 11.0 0.8 2.2
genann 2285.8 1331.5 1871.4 1275.3 17.4 85.9 9.0 53.9 4.3 20.2
libzahl 5149.6 1107.6 4959.4 1078.1 126.2 651.8 76.5 342.9 5.5 19.7
json-c 3389.3 1669.3 3029.9 1646.3 95.7 425.3 31.6 158.1 7.7 34.3
lil 4355.0 1889.3 4062.0 1940.2 155.5 616.4 28.5 140.3 3.6 13.6
TI 5560.5 2629.1 5246.6 2676.6 37.2 189.7 1.9 19.3 1.1 3.0
bzip2 7989.3 3754.3 7660.9 3799.0 159.2 1005.7 76.4 628.8 9.3 70.9
optipng 16371.8 8268.0 12193.6 7119.8 66.9 602.6 11.5 141.9 4.6 42.8
tinycc 21997.8 8903.6 19402.5 9070.5 912.9 3552.1 172.6 996.9 20.2 122.7
tmux 69663.3 18706.5 65644.2 19188.8 5478.3 16058.1 2481.0 9068.2 181.0 656.5

Fig. 3. Histogram of pointers in tmux. The 𝑥 axis denotes the number of pointers affected, and the 𝑦 axis

denotes the normalized ratio of pointers in the program in the bin. We report two separate figures for

context-sensitive analysis: some-ctx and all-ctx count a pointer as affected only if it is affected under at

least one or all call contexts, respectively.

a good starting point to reduce the number of affected pointers found by an analysis. However,
there are several confounding variables we need to control before making a stronger claim: our
experiments work on LLVM bitcode which have far more intermediate variables that can affect the
distribution, (2) the bitcode is in SSA form which makes directional analyses more precise, and
(3) that we do not test on a field-based Andersen-style analysis in isolation. We conduct a second
experiment controlling only directionality to answer these in Section 9.

7 CURBING THE SPREAD OF UNSAFETY

We have shown that more precise analysis can curb the spread of unsafety when attempting to
transform raw pointers into safe references. However, it is not feasible to make substantial changes
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let x: * const i8 =/* unsafe */;

let y: * const i8 =/*safe*/;

let z: * const i8;

// ...

z = y; // (1)

// ...

z = x; // (2)

(a) Rust snippet wherein unsafety spreads from x
to y through z.

(1)

z

(2)

x y

(b) The undirected DFG for

the snippet in Fig. 4a.

(1)

z

(2)

x y

(c) The directed DFG for the

code snippet in Fig. 4a.

Fig. 4. A short code snippet and the data flow graphs for it computed by the directional and the undirectional

analyses. In both cases, we assume that x is used unsafely, so it is the root cause for all other unsafe pointers

in this example. Red indicates unsafe, and blue safe.

to the Rust typechecker in order to support translating C programs into safe Rust. To put our
insights into practice, we must develop methods to gain the benefits of more precise analysis
without modifying the Rust compiler. We suggest several program transformations that would
allow for more precise reasoning by the Rust typechecker without compiler modification; these
transformations mimic the effects of field-sensitive, directional (subset-based), and context-sensitive
analyses. We implement one of these transformations (inserting casts as proposed in Section 7.1),
and leave implementing and evaluating the other two transformations for future work.

7.1 Casting References to Pointers to Introduce Directionality

Rust’s type checker performs an equality-based analysis, meaning that information can flow
in both directions on an assignment; effectively, information is propagated backwards as well as
forwards. Fig. 4a provides an example showing how this spreads unsafety. In this example, x’s
right-hand side is assumed to be inherently unsafe, but y’s right-hand size is considered safe. When
the typechecker analyzes this code snippet, it computes the data flow graph (DFG) shown in Fig. 4b.
The nodes marked 1 and 2 correspond to the expressions on the right-hand sides of lines 5 and 6
(marked (1) and (2)), respectively. The DFG is undirected, so unsafety flows both from x to z, and
from z to y. In this manner, unsafety spreads to y, despite the fact that y is never used unsafely. If
we were to use a directional data flow analysis, we would get the directed DFG in Fig. 4c. In this
graph, unsafe and safe nodes are marked red and blue, respectively. Unsafety flows from x to z,
but not backward from z to x. So, we can deduce that y is safe when using a directional analysis.
If we are to rewrite the types in Fig. 4a using the results of the directional analysis (Fig. 4c), we
get the code snippet in Fig. 5a. This code snippet would be well-typed if the typechecker were
to use a directional analysis and automatic conversion from references to pointers, but since it is
equality-based, we instead get a type error on the assignment z = y;.
We can address this problem by inserting a cast from a reference to a pointer, shown in Fig. 5b.

Variable y is now declared as a reference, and a cast is added on line marked with (1)–the call to
as_ptr(). The cast tells the compiler that the type of node (1) and z do not need to be the same,
effectively removing the edge between these nodes. So, the new undirected DFG the typechecker
effectively computes (Fig. 5c) separates the equivalence classes (1) and z belong to. The compiler
derives that y and node (1) have the same type, which is distinct from the types of x, node (1) and z.
In this manner, cast prevents the spread of unsafety from x to y.

To determine where to insert casts, we use the results of the directional (subset-based) data flow
analysis to find the points in the program where data flows immediately from a safe location to an
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let x: *const i8 =/* unsafe */;

let y: & i8 =/*safe*/;

let z: *const i8;

// ...

z = y; // (1) type error

// ...

z = x; // (2)

(a) The code snippet in Fig. 4a, using the

types computed using a directional analysis

(Fig. 4c).

let x: *const i8 =/* unsafe */;

let y: & i8 =/*safe*/;

let z: *const i8;

// ...

z = y.as_ptr (); // (1)

// ...

z = x; // (2)

(b) The code snippet in Fig. 4a, but with a

reference-to-pointer cast inserted to make

y a safe reference.

(1)

z

(2)

x y

(c) The undirected
DFG for the snip-

pet in Fig. 5b.

Fig. 5. Variations of the code snippet in Fig. 4a with (1) types computed using a directional analysis (Fig. 4c),

and (2) a cast to make y as safe, along with the DFG as computed by the typechecker after insterting the cast.

Red indicates unsafe, and blue safe. x is the only pointer used unsafely, so it is the source of all unsafety.

struct Foo <'a>{bar: &'a i8;}

let z1 : Foo = ...;
let z2 : Foo = ...;
z1.bar = x;
y = z2.bar;

struct Foo <'a>{bar: &'a i8;}
struct Foo2{bar: * const i8;}
let z1 : Foo2 = ...;
let z2 : Foo = ...;
z1.bar = x;
y = z2.bar;

Fig. 6. A code snippet before and after duplicating Foo to emulate field sensitivity.

unsafe one. In the DFG computed by our directional analysis (Fig. 4c), node (1) is now marked safe,
but it immediately flows to into an unsafe location (z). At this position, we insert a cast around
node (1) to encode the results of the directional analysis. This results in the code snippet in Fig. 5b.
As a result, y can now be used as a safe reference until it is passed to z.

Although the directional analysis seems deceptively straightforward, we are interested in building
an analysis whose results can be encoded with reference-to-pointer casts (i.e., by calling as_ptr())
while not introducing any undefined behavior resulting from using pointers and references in
conjunction. We describe both the details of this analysis and how we use its results to transform
the program in Section 8.

7.2 Duplicating Struct Definitions for Field Sensitivity

Rust’s type system is field-based, with a single assigned type for each field of each struct type,
thus merging the types of different instances of the same field into a single type. For example, the
leftmost snippet in Fig. 6 shows that although there is no data flow between x and y, any unsafety
in x forces y to become unsafe because of field-based analysis; x flows into z1.bar, so if x is unsafe,
the bar field of Foo becomes unsafe, causing z2.bar to be unsafe, making y unsafe. A field-sensitive
analysis could distinguish between z1.bar and z2.bar. To get the effect of a field-sensitive analysis
without a field-sensitive analysis, we can define separate struct types for each abstract object or
each combination of struct fields, as shown on the right of Fig. 6. Since z1 and z2 now have different
types, Rust determines that z1.bar and z2.bar are unrelated.

7.3 Duplicating Functions to Introduce Context Sensitivity

If a single call to a given function uses a raw pointer argument, then all calls must use a raw pointer
argument, potentially spreading unsafety to other call sites. The most direct way to solve this
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problem is function cloning, i.e., introduce a different version of the same function for each call site,
each specialized for its particular use (mimicking a context-sensitive analysis). However, there are
several observations and challenges for implementing such an idea that a future implementation
would need to take into account: (1) We do not need to duplicate a function for each call site, but
rather for each combination of pointer, box, and reference arguments. (2) To keep program size
manageable, only a small number of functions should be duplicated, but in away that maximizes how
much of the program is safe. (3) Programs with function pointers require additional bookkeeping,
which is exacerbated by additional complexity from the prior item.

So, an effective method that duplicates functions requires developing heuristics on which func-
tions to duplicate, and exploring the tension between maintainability and safety.

Another challenge left for future work is cloning function pointers for different function signa-
tures. One possible approach is to perform defunctionalization, and to dispatch the correct function
with the correct signature at each call site. Defunctionalization could also overcome the limitation
of pseudo-safety regarding functions with different signatures. However, it would need a precise
enough call graph construction to have only the relevant functions considered at each call site.

8 ENCODING DIRECTIONAL ANALYSIS RESULTS USING CASTS

In this section, we elaborate on our proposal to encode the results of a directional analysis by
inserting casts (Section 7.1), and show how we realize this proposal. We first describe a sound
analysis that captures the spread of unsafety when inserting top-level casts (calls to as_ptr()), and
then describe how we use the results of this analysis to insert casts in general.

8.1 A Type-Safe Directional Data Flow Analysis

For our analysis, we focus on the following issues: (1) capturing immediate data flow from each
expression so we can accurately insert casts, (2) spreading unsafety so that there are no type
mismatches when we consider only casts between top-level pointer types, and (3) ensuring that
adding casts do not introduce any new undefined behavior. For (1), we must access the locations to
which an expression immediately flows, ignoring transitive flows. The initial DFG captures most of
these flows, except for when the expression flows to a pointer dereference or call site. We insert
placeholder nodes in these cases, so that we can use the initial DFG while consulting the final
analysis results when we need to resolve pointer dereferences and call sites. For (2), we must capture
all immediate data flow from each expression, and limit the precision of our analysis to capture the
effect of inserting only top-level casts. For (3), we must reason about and avoid pointer–reference
aliasing, and we piggyback on the Rust compiler to do so. We first explain our analysis in general
with an example (Section 8.1.1), and then discuss how we resolve (3) in Section 8.1.2.

We formulate our data flow analysis in terms of set constraint-based program analysis [Aiken
1999]. In our notation for the subset (directional) constraints, a constructor 𝑐 (𝑥1, . . . , 𝑥𝑛 ;𝑦1, . . . , 𝑦𝑛)
is covariant over the arguments 𝑥1, . . . , 𝑥𝑛 and it is contravariant over 𝑦1, . . . , 𝑦𝑛 . The two kinds of
constructors we are concerned with are ref (𝑥 ;𝑥) (a reference to 𝑥 ) and 𝜆(𝑟 ;𝑝1, . . . , 𝑝𝑛) (denoting a
function with parameters 𝑝1, . . . , 𝑝𝑛 and return location 𝑟 ). Both are from Pearce et al. [2007]. From
here, we make the following modifications to a typical constraint-based analysis:

(1) We unify all pointees of a pointer, effectively switching to an equality-based analysis for
inner pointer types, as our method inserts casts only at the top level. For example, we do not
insert a cast from the type * mut & mut T to * mut * mut T. This change can be expressed
in the language of set constraint systems [Aiken 1999] as 𝑟𝑒 𝑓 (𝑥) ⊆ 𝑟𝑒 𝑓 (𝑦) =⇒ 𝑥 = 𝑦

(meaning that 𝑟𝑒 𝑓 is an invariant constructor).
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(2) We reason about all function pointers using an equality-based analysis, again because we
cannot support casts between function types soundly; a function expecting a & mut T would
expect exclusive access, while a function expecting a * mut T does not. Conversely, a function
expecting * mut T may require transfer of ownership, while a function expecting & mut T

does not. So, neither function’s type can be cast to the other’s, and there is no supertype
of both that we can use. This change can be expressed by treating Pearce et al. [2007]’s 𝜆
constructors as invariant, similar to how we make points-to set constructors invariant in (1).

(3) We insert special nodes to represent (1) function parameters, (2) points-to sets, and (3) declared
variables to act as intermediaries to guarantee that each DFG node that corresponds to an
AST node has only one successor in the DFG. Here, (1) and (2) are pseudo-locations described
later in this section. Declared variable nodes (3) were already in Laertes [Emre et al. 2021].

Once we perform the data flow analysis, we propagate the unsafety information along the data
flow edges by solving the set constraint system, so that all uses of an unsafe pointer also become
unsafe. We then use this unsafety information when querying unsafety of the nodes in the original
graph, before solving the set constraint system.
Fig. 7 shows the types of program locations 𝑙 (i.e., DFG nodes) in our analysis. These locations

are a standard representation for field-based, context- and control flow-insensitive data flow
analysis [Pearce et al. 2007]. They represent actual program locations, or fresh logic variables
needed to fill in the inputs/outputs of public APIs. We extend the data flow analysis used in Laertes
for propagating ownership to use these locations. The free locations 𝑓 are used to create a structure
that mimics the type structure of function and nested pointer types in the program. They are used
by Laertes to represent nested type structure (e.g., nested pointers), where an explicit location for
the inner locations (e.g., the pointee of a nested pointer) do not exist in the program.
Pseudo-locations 𝑝 are not necessary for the analysis per se, but they allow us to structure the

graph such that every node derived from an expression has a single successor in the data flow
graph before transitive closure. We want this property to correctly identify the immediate data
flows from each expression so that we can determine whether an expression’s value is immediately
used as an unsafe pointer. There are two cases where we do not know this before the analysis, and
so we insert pseudo-locations as placeholders we can query later for these cases:

• If an expression is immediately put into a dereference, we insert a points-to pseudo-location
pointsto𝑝 as its successor, where 𝑝 is the pointer being dereferenced. E.g., when handling
an assignment *p = q, we add the edge 𝑞 → pointsto𝑝 to the DFG, so that 𝑞 has a single
successor in the initial DFG.
• If an expression is used as an argument in a function call, we insert a parameter pseudo-
location param 𝑓 𝑖 as its successor, where 𝑓 is the location of the callee (which may be
unknown until the analysis is complete), and 𝑖 is the position of the current expression in the
argument list. E.g., when handling a function call f(x), we insert the edge 𝑥 → param 𝑓 0
indicating that 𝑥 immediately flows into the first parameter of 𝑓 .

8.1.1 Example Involving Pseudo-locations. Fig. 8 shows an example where subset-based data flow
analyses lack the information about immediate data flow into a pointer dereference, and how pseudo-
locations can solve this problem. It shows a program and its directional DFGs, skipping expression
nodes from Section 8 for brevity. The directional analysis completely ignores the nodes and edges
in gray. These nodes correspond to pseudo-locations, and they are there for the client to query
immediate flows when inserting casts. The analysis starts with the graph on Fig. 8b and computes
its transitive closure, adding the edge 𝑏 → 𝑐 when discovering the edge 𝑟𝑒 𝑓 (𝑏;𝑏) → 𝑟𝑒 𝑓 (𝑐 ; 𝑐). This
continues until the fixpoint DFG in Fig. 8c is reached. Now, suppose *q is inherently unsafe, but a
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𝑙 ∈ Location ::= 𝑥 ∈ Var Program variables
| 𝑒 ∈ Expr Expressions
| 𝑓 ∈ Free Free location variables

𝑝 ∈ PseudoLoc ::= pointsto 𝑙 Points-to sets
| param 𝑙 𝑖 Parameters

Fig. 7. Locations and pseudo-locations used in our data flow analysis. Expressions and program variables in

Location come from the definition of variables in Emre et al. [2021]. Program variables correspond to variables

and function names in the program, and free location variables are generated by the analysis as needed.

let a: *mut i8 = ...;

let b: *mut i8 = a;

let p: *mut *mut i8 = &b;

let q: *mut *mut i8 = p;

let c = *q;

// use *q unsafely

(a) A code snippet illustrating immedi-

ate and non-immediate flows.

pointsto(p)

pointsto(q)

c

a

b

ref(b;b)

p

ref(c;c)

q

(b) Initial DFG.

a

b

c pointsto(p)

ref(b;b)

ref(c;c)

p

q

pointsto(q)

(c) Final DFG.

Fig. 8. A code snippet on the left, and the DFGs before and after running a directional data flow analysis.

Edges added by the analysis are dotted and marked in blue. Pseudo-nodes are marked in gray, and edges

to/from them are dashed and marked in gray. c is the only unsafe pointer node, so only it is marked in red.

and b are not. Our goal is to infer that b immediately flows into an unsafe location (because *q is
used unsafely) so that we can correctly identify b as the location to insert a cast around. We need
to determine whether to insert a cast around the use of a or b when using the method described
in Section 8.2. In the initial data flow graph, there is no inherently unsafe successor of a or b

(pointsto p is not inherently unsafe at this stage, the analysis has not solved the set constraints yet).
If we are to use it, we would opt not to insert a cast around a or b, causing a type error: there needs
to be a cast on this path because a is safe whereas c and *q are not. If we can query the information
that the points-to set of q (or p) contains an unsafe pointer, then we could correctly insert a cast
around b. The final graph has this information, though it also includes the transtive closure. So, it
would be incorrect to use because it has an edge from a to c indicating that we should insert a cast
around a. If we have a version of the initial graph where we have placeholders for points-to sets
that we can query, we can have the information we need from each stage of the analysis: immediate
data flows from the initial graph, and what the points-to sets resolve to from the final analysis
result. Our DFG construction inserts the pseudo-nodes (marked in gray) to solve this problem:
When we are interested in the locations a node immediately flows into, we can query its successors
in the initial graph, and when we get a pseudo-node we resolve it using the final graph. With this
strategy, we now notice that the successor of b (pointsto p) may be unsafe because it may be c.

8.1.2 Pointer–Reference AliasingWoes. Rust has strict aliasing rules for references that the compiler
relies on for memory safety and optimization, whereas pointers do not have any aliasing restrictions
checked by the compiler. If we were to cast a reference to a pointer, we may not use both the pointer
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let x : * const i8 = ...;

let y : Box <i8> = ...;

let z : * const i8;

// ...

z = y.as_ptr (); // (1)

// ...

z = x; // (2)

Fig. 9. The code snippet in Fig. 4a with a reference-to-pointer cast, along with the ownership constraints

inserted to make y a safe owning reference (Box).

and the reference after the cast. This can violate the aliasing assumptions of the Rust compiler, and
introduce new undefined behavior. We call this naive method the unsafe transformation. In order to
resolve this problem, we need to make sure that a reference is never used if the pointer it is cast to
is in use. To ensure this, we use the Rust borrow checker: whenever a location needs to become
unsafe, we also mark that location to be owned. This ownership requirement does not affect the
location itself, but it enforces that all safe references that flow into this location are also owned (i.e.,
they are of type Box<T> rather than & T). We consume the Box<T> when inserting a cast, so the cast
invalidates the incoming reference, and the ownership requirement invalidates all prior references
to the same object (enforced by Rust). We call the method that enforces this constraint the safe
transformation. Fig. 9 shows the result of the safe transformation applied to the snippet in Fig. 4a.

Adding these ownership constraints comes with a cost in how many pointers we can make safe,
as the ownership requirement would invalidate some uses of pointers. Moreover, Laertes cannot
convert a reference expression (such as &mut x) to an owned pointer because of two reasons:
(1) Creating a Box out of &mut x would require moving x to the heap (making a heap allocation)

which may negatively impact the performance of the program.
(2) When the type of x implements Copy (i.e., it is trivially copyable), the compiler may implicitly

copy x instead of moving it to the heap. In this case, rewriting &mut x to Box::new(x) would
be incorrect, as Box::new(x) will copy the value instead of making a reference to it.

We quantitatively evaluate the impact of adding ownership constraints in Section 9, in order to
assess how their limitations affect the number of pointers and declarations made safe.

8.2 Representing Directional Flow using Casts

When rewriting an expression 𝑒 with associated location 𝑙 , we check if there is a data flow edge
𝑙 → 𝑙 ′ in the initial DFG with pseudo-locations, such that 𝑙 is marked safe but 𝑙 ′ is marked unsafe in
the final DFG. If there is such an edge, then we insert a cast surrounding 𝑒 , because 𝑒 represents
a reference that will be used immediately as a pointer. We query the edges in the DFG before
the transitive closure (i.e., the graph before solving the set constraints) in order to capture such
immediate flows. Otherwise, we would insert a cast on every expression that may eventually flow
to an unsafe location. We also resolve all pseudo-locations using the final DFG, allowing us to
identify immediate data flows at call sites and dereferences not present in the initial DFG.

9 EVALUATION OF OUR METHOD OF INSERTING CASTS

In this section, we evaluate Laertes with our modifications to measure the impact of both the
safe and the unsafe version of inserting casts. The safe version introduces ownership with each
cast (solving the issue described in Section 8.1.2), whereas the unsafe version does not (potentially
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introducing undefined behavior by aliasing pointers and references). We are specifically interested
in the following research questions:
• RQ3: Does the analysis we propose reduce the set of affected pointers?

• RQ4: How effective is adding only top-level casts in terms of making more declarations and

dereferences safe?

• RQ5: How much room for improvement is there between the safe and the unsafe transformations

described in Section 8.1.2?

• RQ6: How does inserting casts affect the typechecker’s view of the program (as interpreted by

Laertes)?

9.1 Experiment Setup

We use pseudo-safety (Section 3) to evaluate our method in this section, so we use the same
benchmarks we used in Section 4. Table 1 lists the corpus of benchmark programs, the number of
eligible pointers under pseudo-safety, and the number of pointers made safe by the baseline. We
run Laertes under the following configurations after the pseudo-safety transformations:
• Equality-based: This is a version of Laertes with an equality-based analysis, without any
of the transformations discussed in this paper. This serves as a baseline.
• Subset-based (unsafe): This is a version of Laertes with a directional analysis that naively
inserts casts everywhere possible without guaranteeing a lack of aliasing between pointers
and references. We use this version of the analysis to assess the room for improvement for
future work that might design custom pointer types that can borrow a reference rather than
transferring ownership.
• Subset-based (safe): This is a version of Laertes with a directional analysis that inserts
casts only when it can guarantee the lack of aliasing between pointers and alive references
by consuming the references, as described in Section 8.1.2.

In our analysis of the experiment results, we focus on the change in the number of pointer
declarations, the number of pointer dereferences, and the sizes and the number of equivalence
classes of pointers induced by Laertes’s model of the typechecker. We do not look into the change
in the number of functions because pseudo-safety replaces unsafe pointer uses with other unsafe
substitutes in some cases (Section 3). In order to measure the potential effect of handling nested
pointers in a directional manner, we also conduct the following experiment:
(1) Laertes computes a set of instigator pointers, i.e. the root causes of unsafety due to lifetimes

for each iteration of invoking the compiler [Emre et al. 2021]. We record these for each
benchmark.

(2) Then, we compute how many pointers are not made unsafe by these root causes using both
the analysis described in Section 8.1, and an analysis that uses directionality for nested
pointers. The number of pointers marked safe by the first analysis is the number of pointers
made safe, whereas the number of pointers marked safe by the second analysis is an an upper

bound on the number of pointers that could be made safe with more elaborate casts.

9.2 Results

RQ3. As discussed in Section 6, our earlier analysis precision study suggests that directionality
can reduce the number of affected pointers, thus curbing the spread of unsafety. However, as
discussed in the end of that section, there are some confounding variables we did not control
for. We repeat the same study using the analyses we built on top of Laertes: an equality-based
(Steensgaard-style) analysis that Laertes provides (corresponding to P1 in Section 6), a subset-based
(Andersen-style) analysis, and the analysis described in Section 8.1.
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Fig. 10. Histogram of pointers in tmux at the HIR level. The 𝑥 axis denotes the number of pointers affected,

and the 𝑦 axis denotes the normalized ratio of pointers in the program in the bin. equality-based is the

result of the Steensgaard-style analysis, subset-based is the result of the Andersen-style analysis, and ours

is the result of the analysis we describe in Section 8.1.

Our results on directionality match our observations in Section 6. For lack of space, we present
only the histogram for tmux, and omit the overall statistics. Fig. 10 presents this distribution of
affected pointers for a fully-directional analysis, the analysis suggested in Section 8.1, and an
equality-based analysis (used by baseline Laertes). The results show that a field-based, directional
analysis yields the smallest affected pointer sets, albeit not to the same extent as what we observed
for P3 in Fig. 3. Fig. 10 also shows that the precision sacrificed by making the analysis effectively
equality-based for nested pointers has a noticeable impact (Section 8.1), but the analysis we suggest
still yields mostly small affected pointer sets.

RQ4. Tables 4 and 5 show the declarations and dereferences in the program (respectively), as well
as howmany declarations/dereferences are made safe by eachmethod.When looking at declarations
(Table 4), inserting top-level casts safely increases the effectiveness of lifetime inference by 75%
(an increase from 12% to 21%). We see a similar overall picture for dereferences (Table 5). Our safe
method increases the number of dereferences made safe by 54% (an increase from 11% to 17%).
Although our method improves on Laertes relatively well (a 75% and 57% increase in the number
of declarations and dereferences made safe, respectively), the overall number of pointers made safe
is still low. Encoding other causes of analysis imprecision (such as a lack of context-sensitivity and
field-sensitivity) is a worthwhile goal for future work on making more pointers safe.

When looking at the number of pointer declarations/dereferences made safe, introducing casts
does not significantly improve Laertes’ efficacy relatively in four benchmarks: grabc, xzoom,
libcsv, and TI. The first two use an effectively global pointer unsafely (while interacting with the
X graphics library), resulting in a spread of unsafety through the program. The unsafety in libcsv
is caused directly by instigator pointers, so it is unsafety that needs to be fixed by the programmer
(it is outside the scope of lifetime inference). Finally, the unsafety in TI spreads through function
pointers, limiting the efficacy of our method; we elaborate on this in Section 9.3.
Based on our limit study using the directional analysis in Laertes, more elaborate casts could

make at most 114 (1.3%) more pointer declarations safe total across benchmarks. We do not expect
this limitation to have a large effect in the efficacy of Laertes in terms of making pointers safe.

RQ5. Comparing the number of pointers made safe by the safe and unsafe methods (Table 4), we
see that the unsafe method allows a further 25% increse (an increase from 21% to 24% in the total
percentage of pointers made safe). So, a more elaborate handling of the aliasing issues discussed in
Section 8.1.2 may improve our method in the future. However, our method of offloading aliasing
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Table 4. Pointer declarations. The “All pointers” column denotes the number of all pointers in the program

(because we use pseudo-safety). Without casts = pointers made safe by the baseline (equality-based) trans-

formation. With casts (unsafe) = pointers made safe when introducing casts while allowing unsafe aliasing.

With casts (safe) = pointers made safe when introducing casts and preventing unsafe aliasing by consuming

the original object in casts. All percentages are relative to the “All pointers” column.

Benchmark All pointers Made safe
Without casts With casts (unsafe) With casts (safe)

robotfindskitten 2 2 (100%) 2 (100%) 2 (100%)
qsort 4 2 (50%) 3 (75%) 2 (50%)
grabc 13 8 (62%) 8 (62%) 8 (62%)
xzoom 29 3 (10%) 3 (10%) 3 (10%)
libcsv 37 25 (68%) 27 (73%) 25 (68%)
genann 73 12 (16%) 18 (25%) 15 (21%)
urlparser 79 7 (9%) 66 (84%) 46 (58%)
bzip2 227 78 (34%) 141 (62%) 135 (59%)
json-c 325 72 (22%) 151 (46%) 115 (35%)
lil 438 34 (8%) 162 (37%) 158 (36%)
libzahl 457 51 (11%) 208 (46%) 83 (18%)
tulipindicators 866 18 (2%) 36 (4%) 35 (4%)
tinycc 1352 207 (15%) 207 (15%) 387 (29%)
tmux 4635 468 (10%) 1045 (23%) 775 (17%)
TOTAL 8537 987 (12%) 2077 (24%) 1789 (21%)

Fig. 11. Equivalence classes among pointers computed by Laertes’s model of the typechecker before and after

our transformations. The points denoted with × are the original equivalence classes, and the points denoted

with + are the equivalence classes on the programs with casts inserted by our unsafe method. Members of an

equivalence class must have the same pointer type. The benchmarks are ordered by the number of pointers.

constraints to the compiler using ownership is nevertheless an effective and simple solution. The
gap between the safe and the unsafe method is larger when looking into dereferences (a 36%
increase from 17% to 21% (relative to 12% baseline) in the absolute number of dereferences made
safe). Most of these cases are in 3 benchmarks (tinycc, json-c, and libzahl), where there are
pointers that are dereferenced many times but could not be made safe using the safe translation.

RQ6. Our method controls the spread of unsafety by inserting reference–pointer casts, parti-
tioning equivalence classes of pointers, as described in Section 8.2. Fig. 11 shows the equivalence
class sizes before and after our transformation. We present only the changes in equivalence classes
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Table 5. Pointer dereferences. The “All dereferences” column denotes the number of all pointer dereferences

in the program (because we use pseudo-safety). Without casts = dereferences made safe by the baseline

transformation. With casts (unsafe) = dereferences made safe when introducing casts while allowing unsafe

aliasing. With casts (safe) = dereferences made safe when introducing casts and preventing unsafe aliasing

by consuming the original object in casts. All percentages are relative to the “All dereferences” column.

Benchmark All dereferences Made safe
Without casts With casts (unsafe) With casts (safe)

qsort 10 4 (40%) 4 (40%) 4 (40%)
grabc 21 17 (81%) 17 (81%) 17 (81%)
robotfindskitten 24 24 (100%) 24 (100%) 24 (100%)
urlparser 60 58 (97%) 58 (97%) 58 (97%)
xzoom 172 119 (69%) 119 (69%) 119 (69%)
libcsv 174 51 (29%) 51 (29%) 51 (29%)
genann 339 5 (1%) 11 (3%) 6 (2%)
lil 1668 634 (38%) 903 (54%) 885 (53%)
tulipindicators 1847 154 (8%) 583 (32%) 582 (32%)
json-c 1878 167 (9%) 739 (39%) 234 (12%)
libzahl 2457 195 (8%) 573 (23%) 268 (11%)
bzip2 3764 319 (8%) 777 (21%) 750 (20%)
tinycc 5632 949 (17%) 949 (17%) 1321 (23%)
tmux 21641 1888 (9%) 3460 (16%) 2284 (11%)
Total 39687 4584 (12%) 8268 (21%) 6603 (17%)

after our safe method (the version that marks a reference as owned when it is cast to a pointer)
for the sake of space. We also calculated the average changes in some statistics; we calculate the
average change across a statistic 𝑠 across by computing𝐺𝑒𝑜𝑀𝑒𝑎𝑛 (𝑠after/𝑠before) where𝐺𝑒𝑜𝑀𝑒𝑎𝑛 is
the geometric mean across programs, 𝑠before is the value of the 𝑠 before inserting casts, and 𝑠after
is the value of 𝑠 after our unsafe method. The average size of an equivalence class decreases by
19% on average across our benchmarks (min=0%, max=50%). Our method increases the number of
equivalence classes by 26% on average (min=0%, max=360%). Finally, the largest equivalence class
in each benchmark decreases by 16% on average (min=0%, max=56%).

We still have large equivalence classes after our transformation because we break down equiva-
lence classes (via cast inserting) only when doing so is beneficial; only the casts required to break
“reverse data flow” from unsafe pointers to references are present in the final program, and all
other data flow edges are present. So, large equivalence classes where all values are safe, or large
equivalence classes where directionality does not lead to improvement are still present in the
program. The latter case happens when a “necessarily unsafe” pointer flows into many pointers
(e.g., a global value read from multiple locations). Additionally, the analysis presented in Section 8
degenerates into an equality-based analysis for nested pointers, which is another contributor to
large equivalence classes.

Ourmethod does not change the equivalence classes in the benchmarks qsort, robotfindskitten,
grabc, and xzoom, because the data flowing from the pointers used unsafely in these programs make
the rest of the pointers unsafe. As such, these have no opportunities to insert a reference–pointer
cast. These are the programs with the lowest number of pointer declarations, and the first three
have at most 4 pointers in an equivalence class. xzoom is the exception, and our method yields no
improvement as 17/29 of the pointers in are already unsafe, and they become a source of unsafety
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for the rest of the pointers in the program even with a directional analysis. In this case, all pointers
are unsafe, so there are no places to insert casts and break equivalence classes.

9.3 Limitations

As mentioned in Section 8.1, our analysis uses equality-based reasoning for function pointers
(since casting functions pointers is unsound), and for inner pointers (to avoid more complex casts).
The limitations around function pointers impacts the TI benchmark disproportionately; TI is a
time series analysis library that implements hundreds of analysis functions, and the functions
are dispatched via a global array of function pointers. Only 4% of the pointers were made safe in
this benchmark, even with directionality (Table 4). Investigating the spread of unsafety in TI, we
observe that there is an unsafe pointer that flows into the parameters of a function pointer from this
global array in one of the main drivers of the program, and this is a genuine data flow that cannot
be remedied by encoding the results of a more precise analysis. This data flow results in almost all
function parameters in the program to be unsafe, requiring resolution by the programmer. In the
interim, approaches that encode the results of a context-sensitive analysis may allow this driver
to be unsafe while making other drivers in the same program safe. Moreover, some of these data
analysis functions use their parameters unsafely, and the equality-based reasoning for functions
causes this unsafety to spread to other data analysis functions through the global array. Future
work can introduce programmer-verified barriers and casts at call sites, similar to the work done
by Machiry et al. [2022]) to help contain the spread of unsafety through function pointers.

9.4 Performance

We run Laertes with an optimization: Emre et al. [2021] generate a separate lifetime variable for
each struct field, we use the same lifetime variable for all fields of a struct. In our experiments, this
optimization did not cause any loss of precision (the resulting programs had the same safe pointers)
while cutting the run time for our longest program by half. Both the safe and unsafe versions of
our method finish in under 2 minutes for all programs except for tinycc and tmux. The unsafe
version of the method takes 46 minutes for tinycc and 104 minutes (1h 44m) for tmux. The safe
version finishes in 40 minutes for tinycc and 100 minutes (1h 40m) for tmux.

10 FUTUREWORK AND ALTERNATIVE APPROACHES

In Section 7, we propose three methods to curb the spread of unsafety using a pointer analysis-based
approach that modifies source programs, and we implement one of these methods (encoding direc-
tionality using casts) in Section 8. The other two methods are left for future work. In the remainder
of this section, we discuss two alternative approaches to curb unsafety without pointer analysis,
namely (1) integrating more tightly with the Rust typechecker to exploit fine-grained control over
typechecking results, and (2) modifying the Rust type system rather than the source programs. We
also discuss why we settled on our approach in this paper, and we leave the implementation of
these approaches for future work.

10.1 Tighter Integration with the Rust Type Checker

We follow a pointer analysis-based framework in Section 6 because (1) there is extensive research
on pointer analysis (and data flow analysis in general) with different sensitivity levels, (2) existing
tools such as SVF [Sui and Xue 2016] enable us to easily experiment with different sensitivity
levels, and (3) Laertes [Emre et al. 2021] already uses a taint analysis to reason about the spread
of unsafety through the type system, so pointer analysis-based approaches are easier to integrate
with Laertes. So, a pointer analysis-based framework allows us to conduct the limit studies in this
paper with great flexibility.
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An alternative approach is to build a typechecker on top of Rust’s typechecker, allowing for
fine-grained access to typechecking decisions. Such an approach might more faithfully represent
the decisions made by the typechecker, and reduce the overhead when tools like Laertes consult
the typechecker to discover appropriate lifetime and ownership information from type errors.
A type system-based model can also reason about the different sensitivity levels we explore in
Section 6, and one could implement our proposed solutions in Sections 7 and 8 by building a more
elaborate typechecker on top of the Rust typechecker. However, extending Rust’s typechecker
would require work comparable to what we sketched in Section 7: it would require engineering a
precise, scalable, whole program analysis, performed by the typechecker. While such an approach
could replicate our limit study in Section 6 within the intellectual framework of typesystems, it is
unlikely that such a study would yield any additional insights.

10.2 Changing the Type System rather than the Programs

In Section 7, we focus on keeping the Rust type system the same, and instead change the programs
to work with Rust. This approach is rooted in the larger goal of translating C code to idiomatic,
safe Rust. Alternatively, one could change the Rust type system to accept more programs, which
might provide an easier path for the future work sketched in Section 7. For example, one could use
parametric polymorphism to help reason about context sensitivity [Fähndrich et al. 2000]. Such an
approach could also exploit existing work on flow-sensitive type qualifiers [Foster et al. 2002] to
introduce flow-sensitive directionality, which was left unexplored in Section 7. However, such type
system extensions might not be adopted by the Rust community, because they are specific to a
problem that does not exist in safe Rust code. Moreover, such an elaborate type system analogous to
a context- and flow-sensitive analysis would be too slow for standard compilation, making adoption
overall unlikely.

11 CONCLUSIONS

We have conducted a series of limit studies on the effectiveness of ownership and lifetime inference
for unsafe raw pointers in c2rust-translated programs. Our first limit study uses a new technique
called pseudo-safety that extends the study to all raw pointers, rather than just the small subset
used in prior studies. This additional data contradicts prior results and the claim that [Emre et al.
2021]’s technique can make most pointers safe when the only source of unsafety is a lack of lifetime
and ownership information. In contrast, our limit study shows that the majority of raw pointers
cannot be translated to safe references via existing techniques. We empirically show that type
equality is the culprit, causing unsafety to spread from only a few pointers to many others. We
show that more precise pointer analysis can mitigate this problem, and suggest several program
transformations that encode analysis results in manner understandable by an unmodified Rust
compiler. We implement and evaluate one of these suggestions: encoding the results of a subset-
based (directional) data flow analysis via introducing casts from references to pointers. We show
that the analysis and transformation need to be co-designed to guarantee that the transformation
captures the results of the analysis. Finally, we evaluate this transformation using pseudo-safety,
and we see a 75% increase (from 12% to 21% of pointers) in the effectiveness of Laertes when
we introduce casts. So, encoding the results of a subset-based analysis helps contain the spread
of unsafe pointers and makes lifetime inference handle a larger part of the program. We leave
investigating our other suggestions to encode the results of context-sensitive and/or field-sensitive
analyses to future work, along with transformations handling subset-based analysis for function
pointers. We also observe that both programmer intervention and encoding the results of more
precise analyses are needed to tame unsafety further.
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