
CS 220:
Introduction to
Parallel Computing



§ Glad to have you all in class!

§ Lecture Information:
Time: MWF 3:30 – 4:35pm
Room: HR 148
Course website:

http://www.cs.usfca.edu/~mmalensek/cs220

Welcome to CS 220!

1/22/18 CS 220: Parallel Computing 2



§ Instructor: Matthew Malensek
§ Office Hours: MF 10-11am, Th 1-2pm (HR 416)
§ Research: distributed systems, big data

§ TA: Ivy An
§ Office Hours: MW 1-2pm

Staff

1/22/18 CS 220: Parallel Computing 3



§ We currently have 25 students enrolled with 19 more 
on the waitlist

§ If you’re enrolled, great!

§ If not:
§ Come put your name on the sign-up sheet after class
§ Email me if you’re a special case (need the course to 

make progress, can’t get in to any CS courses, etc…)
§ You may also want to let our chair, Prof. Wolber, know

Enrollment Status

1/22/18 CS 220: Parallel Computing 4



§ CS 110 with a B or better and instructor permission
- or -

§ CS 112 with a C or better

Quick Note: Prerequisites

1/22/18 CS 220: Parallel Computing 5



§ Syllabus
§ Why C?
§ Modern CPU Performance

§ Parallel Computing Background

Today’s Agenda

1/22/18 CS 220: Parallel Computing 6



§ Syllabus
§ Why C?
§ Modern CPU Performance

§ Parallel Computing Background

Today’s Agenda

1/22/18 CS 220: Parallel Computing 7



§ Check the course website before class for:
§ Syllabus
§ Recent announcements
§ Assignments
§ Printable lecture notes

§ Grades will be posted on Canvas

§ Project submissions: GitHub

Staying up to Date

1/22/18 CS 220: Parallel Computing 8



1. C programming
2. Parallel computing with MPI
3. Programming with threads and parallelism 

primitives
4. Wrapping up: GPU programming

§ à A tentative schedule is available online

Course Roadmap

1/22/18 CS 220: Parallel Computing 9



§ Required:
Brian Kernighan and Dennis Ritchie, The C 
Programming Language, 2nd edition, Prentice-
Hall, 1988.

§ Optional:
Peter Pacheco, An Introduction to Parallel 
Programming, Morgan-Kaufmann, 2011.

Books

1/22/18 CS 220: Parallel Computing 10



§ Class sessions will introduce C and parallel 
programming theory

§ We will work through programming examples 
together as a class
§ Remember to ask questions!

§ You will start on homework assignments (labs) to 
apply what we’ve learned

§ We’ll also work on 4-5 larger projects

Course Structure

1/22/18 CS 220: Parallel Computing 11



§ Besides homework and projects, you’ll be evaluated 
in two ways:
§ Midterms
§ Final exam

§ We’ll have ~2 midterms
§ Cumulative final

Evaluation

1/22/18 CS 220: Parallel Computing 12



§ Homework: 15%

§ Projects: 50%

§ Midterms: 20%

§ Final: 15%

Grade Distribution

1/22/18 CS 220: Parallel Computing 13



Grading

1/22/18 CS 220: Parallel Computing 14

Score Grade
100 – 93 A

92 – 90 A-

89 – 87 B+

86 – 83 B

82 – 80 B-

79 – 77 C+

76 – 73 C

72 – 70 C-

69 – 67 D+

66 – 63 D

62 – 60 D-

59 – 0 F



§ Assignments are due at 11:59 pm on the due date
§ Late homework is not accepted
§ Late projects are penalized 10% per day, for a 

maximum of three days (no credit thereafter)

Policies

1/22/18 CS 220: Parallel Computing 15



§ Syllabus
§ Why C?
§ Modern CPU Performance

§ Parallel Computing Background

Today’s Agenda

1/22/18 CS 220: Parallel Computing 16



§ The C programming language was invented around 
1970 
§ It’s old.
§ Legend has it that Dennis Ritchie invented it while he 

was riding around in his horse-drawn carriage

§ Jokes aside, C can be a tough language to learn

§ The good news? C is a very simple language!

§ The bad news? C is a very simple language!

Oh Say Can you C?

1/22/18 CS 220: Parallel Computing 17



§ Nearly all operating systems are written in C
§ Linux: almost all C
§ macOS: most of the low-level functionality is C
§ Windows: C and C++ 
§ Two of the most popular mobile operating systems 

are based on these…

§ Embedded systems: elevators, refrigerators, routers, 
TVs are all often written in C

§ High-performance software is often written in C

So, why learn this old thing?

1/22/18 CS 220: Parallel Computing 18



TIOBE Language Rankings

1/22/18 CS 220: Parallel Computing 19

https://www.tiobe.com/tiobe-index/



§ C is very fast and efficient
§ It’s a thin layer above the actual hardware
§ Languages like Python or Java operate on higher 

levels of abstraction

§ C is always in the back of hardware designers’ minds

§ C is easy to interoperate with
§ Slow Python code? Re-implement the function in C 

and call it easily from your Python app

C’s Popularity isn’t just Historical

1/22/18 CS 220: Parallel Computing 20



§ Syllabus
§ Why C?
§ Modern CPU Performance

§ Parallel Computing Background

Today’s Agenda

1/22/18 CS 220: Parallel Computing 21



Single-Threaded Performance

1/22/18 CS 220: Parallel Computing 22

Source: Stephen A. Edwards. History of Processor Performance. 



Another Look

1/22/18 CS 220: Parallel Computing 23

Source: Herb Sutter. The Free Lunch Is Over. Dr. Dobb’s Journal.

Clock Speed

Power



§ In the past, we could just wait and CPUs would get 
faster and faster (in terms of clock speed)
§ Your CPU’s clock speed: 3.2 GHz (for example)

§ Performance improvements have slowed over time
§ Too much power consumption, too much heat

§ So as we all know, “There ain't no such thing as a free 
lunch”
§ TANSTAAFL
§ *Unless you work at a tech company (?)

The “Free Lunch” is over?

1/22/18 CS 220: Parallel Computing 24



§ These days, we get better performance through 
horizontal scaling
§ Rather than making one really fast processor (vertical 

scaling), we’ll make a processor running at a 
reasonable speed with multiple cores

§ And in some cases, we’ll have multiple processors, or 
even multiple machines
§ Clusters

Today’s Reality

1/22/18 CS 220: Parallel Computing 25



§ Google doesn’t buy the world’s craziest, most 
expensive supercomputers

§ They buy commodity hardware in huge quantities

§ A single Google search may query tens or even 
hundreds of servers

§ MPI is one option for cluster computing that we’ll be 
learning in this class

An Example: Google

1/22/18 CS 220: Parallel Computing 26



§ AMD’s recent Ryzen/EPYC CPUs push the multicore 
concept further

§ Let’s say we want to build a 128-core CPU
§ The chance of a manufacturing defect is fairly high

§ AMD’s latest approach is taking four 32-core CPUs 
and fusing them together
§ MCM: multi chip module

Another Example: AMD

1/22/18 CS 220: Parallel Computing 27



§ In some cases, this slowdown is okay:
§ Most applications run “fast enough”
§ I don’t have to buy a new laptop every year!

§ But some use cases still need more power:
§ Climate models, large-scale, more realistic simulations
§ Machine Learning (deep learning)
§ Bioinformatics
§ Games! VR requires massive computational 

capabilities

Performance Challenges

1/22/18 CS 220: Parallel Computing 28



§ We can increase the IPC (instructions per clock 
cycle) of the CPU
§ This is not easy!
§ Modern CPUs even use machine learning to help 

optimize instruction throughput

§ We can keep decreasing the size of transistors

Solution: IPC

1/22/18 CS 220: Parallel Computing 29



§ We can shrink the size of the transistors in our CPUs
§ With increases in density, we can have more CPU 

cores

§ This lowers costs and allows us to pack even more 
transistors in a small area
§ The latest from Intel is around 10 nm 

§ 5 nm is currently considered the limit for die shrinks
§ Physical limits; quantum tunneling

Solution: Die Shrink 

1/22/18 CS 220: Parallel Computing 30



§ The current approach is parallel programming, and in 
some cases distributed programming

§ So really, my point is:
If you care about performance, you’re going to have 
to parallelize your workloads

§ So, what exactly is parallel programming?

Solution: Parallel Programming

1/22/18 CS 220: Parallel Computing 31



§ Syllabus
§ Why C?
§ Modern CPU Performance

§ Parallel Computing Background

Today’s Agenda

1/22/18 CS 220: Parallel Computing 32



§ Adding more cores is only helpful if we can make use 
of them!
§ The bad news is parallelizing applications can be 

difficult

§ The basic idea behind parallel computing is:
Divide and Conquer

§ If we can split a problem up into many smaller 
problems, then each core (or each machine) can take 
care of part of the work

Parallel Programming [1/2]

1/22/18 CS 220: Parallel Computing 33



§ Some problems are embarrassingly parallel
§ If I told everyone to raise their hands, no coordination 

is necessary
§ Another example: running simulations

§ Unfortunately, not all problems are as easy to 
parallelize
§ Communication is required between CPUs and 

machines 

Parallel Programming [2/2]

1/22/18 CS 220: Parallel Computing 34



§ Let’s blur an image in 
parallel: first, we split it up 
across our CPUs

§ Next, each CPU loops 
through each pixel and 
inspects its neighbors to 
blend them together

§ The only problem? We 
need to stitch the edges 
together

Blurring an Image

1/22/18 CS 220: Parallel Computing 35



§ Some algorithms are extremely difficult (or even 
impossible) to parallelize 
§ Global Shared State

§ In some situations, you may select a less efficient 
algorithm simply because it is parallelizable

Other Issues

1/22/18 CS 220: Parallel Computing 36



§ Distributed memory systems (clusters)

§ Shared memory systems

§ Heterogeneous systems
§ Specialization for a particular task

§ Graphics Processing Units (GPUs)
§ Single instruction, multiple data (SIMD) systems

Types of Parallel Architectures

1/22/18 CS 220: Parallel Computing 37



§ Welcome to class (again!)
§ Ask questions, come to instructor/TA office hours, 

we’re here to make sure you succeed

§ Next class:
§ Parallel architectures
§ Getting started with C

Wrapping Up

1/22/18 CS 220: Parallel Computing 38


