
Lecture 13

CS 220: Introduction to Parallel Computing

Message Passing Interface (MPI)

§ Parallel Computing Background
§ Diving in: MPI
§ The Jetson cluster

Today’s Schedule

3/7/18 CS 220: Parallel Computing 2

§ Parallel Computing Background
§ Diving in: MPI
§ The Jetson cluster

Today’s Schedule

3/7/18 CS 220: Parallel Computing 3

§ Now that we’re all C masters, we can move on to the
good stuff: parallelism

§ Specifically, we’ll be looking at distributed memory
systems for the next section of the course

§ In these systems, we have a few different elements:
§ Physical machines
§ Processors
§ Processor cores

Parallel Computing (1/2)

3/7/18 CS 220: Parallel Computing 4

§ Parallel computing can be summed up with a simple
motto:
§ “Divide and conquer”

§ Let’s take a problem, break it into smaller pieces, and
then have multiple cores/processors/machines work
on it all at once

§ Challenge: getting all these processors to work
together

Parallel Computing (2/2)

3/7/18 CS 220: Parallel Computing 5

§ We can use several different strategies to parallelize
applications

§ The first approach we’ll examine in this class is MPI
§ Message Passing Interface

§ MPI has a lot of functionality, but at its core is based
on a very simple idea:
§ Running multiple copies of your program

§ (Sometimes even across multiple computers)

Approaches

3/7/18 CS 220: Parallel Computing 6

§ Before we dive in, we need to take a look at the
hardware architectures behind parallel systems

§ There are several types:
§ SISD, SIMD, MISD, MIMD

§ These classifications were proposed by Michael J.
Flynn in 1966
§ Flynn’s Taxonomy

§ See: https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

Architectures

8/25/17 CS 220: Parallel Computing 7

https://en.wikipedia.org/wiki/Flynn's_taxonomy

§ Each architecture is composed of three elements
§ PUs – processing units / processing elements
§ The instruction pool

§ Your program, translated to machine code

§ The data pool
§ The data you’re working with

Flynn’s Taxonomy: Breakdown

8/25/17 CS 220: Parallel Computing 8

§ Single instruction, single
data
§ One CPU, one core, one

thread (uniprocessor)
§ One pool of memory
§ One thing at a time!

§ PCs up until 2010 or so

SISD

8/25/17 CS 220: Parallel Computing 9

Source: Cburnett. CC BY-SA 3.0. https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

§ Single instruction,
multiple data stream

§ Each PU executes the
same instructions on a
different piece of the
data

§ Great for highly-parallel
workloads (GPUs)

SIMD

8/25/17 CS 220: Parallel Computing 10

Source: Cburnett. CC BY-SA 3.0. https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

§ Multiple instruction, single
data

§ More uncommon
§ Here, the data is fed to

multiple PUs
§ Each PU executes the

same instructions
§ Then the results are

compared
§ Fault tolerance

MISD

8/25/17 CS 220: Parallel Computing 11

Source: Cburnett. CC BY-SA 3.0. https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

§ Multiple instruction,
multiple data

§ Nodes work
independently

§ Multi-core PCs,
distributed systems

§ Our focus in this class

MIMD

8/25/17 CS 220: Parallel Computing 12

Source: Cburnett. CC BY-SA 3.0. https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

§ In the best case scenario, doubling the number of
cores will halve your execution time

§ In practice, this is difficult
§ There is overhead associated with parallelism

§ Amdahl’s law puts a bound on potential speedup:
S – speedup
P – parallelizable portion
N – number of PUs

Amdahl's Law [1/2]

8/25/17 CS 220: Parallel Computing 13

Amdahl’s Law [2/2]

8/25/17 CS 220: Parallel Computing 14

By Daniels220 at English Wikipedia, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=6678551

§ Parallel Computing Background
§ Diving in: MPI
§ The Jetson cluster

Today’s Schedule

3/7/18 CS 220: Parallel Computing 15

§ Message passing is the most common paradigm for
programming distributed memory systems

§ Processors coordinate their activities by sending
messages to each other across the network
§ Infiniband
§ Ethernet

§ Message Passing Interface, or just MPI, gives us C
functions to do this

Message Passing Interface

3/7/18 CS 220: Parallel Computing 16

§ With MPI, we won’t just be running a single program
anymore
§ Now, we’ll deal with multiple processes

§ These processes are identified by nonnegative
integer ranks

§ If there are p processes, the processes will have
ranks 0, 1, 2, … , p − 1

Ranks

3/7/18 CS 220: Parallel Computing 17

§ On Linux, it’s as easy as installing the openmpi group
of packages:
§ apt-get install openmpi-bin openmpi-common

libopenmpi*

§ Newer Macs don’t come with MPI already installed,
so you will need a 3rd party package manager:
§ Homebrew (http://brew.sh), MacPorts
§ Then install openmpi

§ Windows: cygwin openmpi package is buggy

Installing MPI

3/7/18 CS 220: Parallel Computing 18

http://brew.sh/

§ To compile your MPI code, you’ll need a new
command:
§ mpicc

§ This is just a wrapper around gcc or whatever
compiler you have on your system
§ Sets up compilation with the correct libraries and

options

Compiling MPI Applications

3/7/18 CS 220: Parallel Computing 19

§ You can’t just run a.out or whatever your executable
is called

§ Instead, you’ll need to use an MPI launcher:
§ orterun -n 4 ./a.out

(will run a.out with four processes)
§ mpiexec -n 4 ./a.out

(exactly the same thing!)
§ mpiexec -n 4 --hostfile=jets.txt ./a.out

(runs on multiple machines)

Running MPI Applications

3/7/18 CS 220: Parallel Computing 20

§ As usual, we need to write a “hello world” application
as our first step!

§ In MPI, we can print out some more information: the
hostname of the machine, its rank, and the total
number of processes

§ Let’s try this out…

Hello World

3/7/18 CS 220: Parallel Computing 21

§ Needs to be run before you do anything else
§ You can pass in NULL for both of its arguments, or

you can pass in the argc and argv command line
arguments
§ If you do that, it’ll remove any

orterun/mpiexec/mpirun-related stuff from the
command line

MPI_Init()

3/7/18 CS 220: Parallel Computing 22

§ You might’ve notice MPI_COMM_WORLD in the
example

§ This is the global communicator group
§ You can create groups of processes to coordinate

your distributed applications
§ For instance, maybe one group will work on the upper-

left corner of an image

MPI Communicators

3/7/18 CS 220: Parallel Computing 23

/* Total number of processes in this MPI communicator */

int comm_sz;

MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);

/* Get the rank of this processor */

int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* Get the host name of this processor */

char hostname[MPI_MAX_PROCESSOR_NAME];

int name_sz;

MPI_Get_processor_name(hostname, &name_sz);

Helpful Functions

3/7/18 CS 220: Parallel Computing 24

§ At the end of your MPI program you must call:
MPI_Finalize();

§ This cleans up all the MPI state information that was
being held while your program ran

§ Finishes all pending communications
§ After calling this, executing any MPI function will raise

an error

Cleaning Up

3/7/18 CS 220: Parallel Computing 25

§ At a basic level, all MPI does is clone your process
and run it multiple times

§ Without any special intervention, the processes will
all just do the same thing

§ However, we can branch based on process ranks to
organize processing activities and communicate

MPI: Summing Up

3/7/18 CS 220: Parallel Computing 26

§ Parallel Computing Background
§ Diving in: MPI
§ The Jetson cluster

Today’s Schedule

3/7/18 CS 220: Parallel Computing 27

§ We have 24 NVIDIA Jetson TK1 machines

§ These are ARM-based boards for parallel computing
and GPU programming using NVIDIA CUDA

§ Hardware:
§ Quad-core ARM CPU
§ NVIDIA Kepler GPU with 192 CUDA Cores
§ 2 GB Memory

The Jetsons

3/7/18 CS 220: Parallel Computing 28

Jetson TK1

3/7/18 CS 220: Parallel Computing 29

§ Somewhat like a
Raspberry Pi on steroids

§ We’ll use this cluster for
the rest of the semester
§ (Including GPU

programming)

Jetson TK1

3/7/18 CS 220: Parallel Computing 30

§ To reach the jet machines, you will need to use ssh
§ You may have done this in previous courses

§ Furthermore, you will need passwordless ssh set up
in order to effectively use MPI

§ This allows MPI to distribute your program across
multiple servers

Accessing the Jets

3/7/18 CS 220: Parallel Computing 31

§ To get on the Jetson machines, you first need to log
into stargate.cs.usfca.edu

§ Then ssh to:
§ jet01
§ jet02
§ …
§ jet24

Cooling Your Jets

3/7/18 CS 220: Parallel Computing 32

