
Lecture 2

CS 220: Introduction to Parallel Computing

Beginning C

§ More C Background

§ Differences: C vs Java/Python

§ The C Compiler

§ HW0

Today’s Schedule

8/25/17 CS 220: Parallel Computing 2

§ More C Background
§ Differences: C vs Java/Python

§ The C Compiler

§ HW0

Today’s Schedule

8/25/17 CS 220: Parallel Computing 3

§ C is a bit different than Java or Python
§ It is compiled to machine code

§ Java runs on a virtual machine (JVM)
§ Python is interpreted

(translated to machine code on the fly)

§ We can achieve better performance with C, but are
also given more responsibility
§ Memory management is up to us

(no automatic garbage collection)

Architectural Differences

8/25/17 CS 220: Parallel Computing 4

§ It is fairly simple: the language does not have a multitude
of features
§ Coming from Java, the syntax is familiar

§ In cases where we operate close to the hardware, it can
be much easier to implement than the equivalent
Java/Python/etc.
§ Wide use for systems programming
§ Want to contribute to the Linux kernel? It’s written in C

(including the drivers)
§ Performance

C Advantages

8/25/17 CS 220: Parallel Computing 5

§ Much less functionality is available in the standard
library than other languages

§ Memory leaks

§ Segmentation faults (invalid memory access)
§ No objects

§ If you’re used to object-oriented programming in Java
or Python, C will make you rethink your program flow

C Disadvantages

8/25/17 CS 220: Parallel Computing 6

#include <stdio.h>

int main(void)
{

printf("Hello, World!\n");
return 0;

}

Hello World in C

8/25/17 CS 220: Parallel Computing 7

§ Using an IDE (like Eclipse, IntelliJ, etc) is less
common in the C world

§ Many C developers prefer to use a text editor and a
terminal to write their programs
§ Text editor: edit, save
§ Terminal: compile, run

§ There’s a tutorial on the course schedule page for
setting up your editor and C compiler

Writing C Programs

8/25/17 CS 220: Parallel Computing 8

Writing C Programs

8/25/17 CS 220: Parallel Computing 9

§ Very Important: compile and test your code on the
department machines before turning it in
§ We can’t grade it on your specific laptop

§ C compilers can implement the C specification
differently
§ The standards committee releases new specifications

periodically
§ In fact, in olden times, there were several different,

incompatible versions of C

Testing Your Code

8/25/17 CS 220: Parallel Computing 10

§ One last tip: developing C programs on Windows can
be tricky
§ What works on Windows may not work at all on the

department Linux machines

§ The course website has information for setting up a
Linux virtual machine on Windows

§ There are also other options available… use them at
your own risk!

Windows

8/25/17 CS 220: Parallel Computing 11

§ More C Background

§ Differences: C vs Java/Python
§ The C Compiler

§ HW0

Today’s Schedule

8/25/17 CS 220: Parallel Computing 12

A Program in C – Spot the Differences

8/25/17 CS 220: Parallel Computing 13

#include <stdio.h>

void say_hello(int times);

int main(int argc, char *argv[]) {
say_hello(6);
return 0;

}

/* Say Something */
void say_hello(int times) {

int i;
for (i = 1; i <= times; ++i) {

printf("Hello world! (#%d)\n", i);
}

}

Output:

Hello world! (#1)
Hello world! (#2)
Hello world! (#3)
Hello world! (#4)
Hello world! (#5)
Hello world! (#6)

§ Whitespace is mostly ignored
§ Semicolons are required

§ Comments: /* */ and //
§ Including libraries looks a bit different
§ No public/private etc. access modifiers
§ Forward declarations (prototypes)
§ But, there are a lot of similarities…

Differences from Java/Python

8/25/17 CS 220: Parallel Computing 14

§ Arithmetic is mostly the same

§ We use &&, ||, and != instead of and, or and not
§ If, then, else

§ Loops
§ Switches

Similarities

8/25/17 CS 220: Parallel Computing 15

§ More C Background

§ Differences: C vs Java/Python

§ The C Compiler

§ HW0

Today’s Schedule

8/25/17 CS 220: Parallel Computing 16

§ Something you may not be familiar with is compiling
your programs
§ Who has used javac and java from the command line?
§ …Who presses the “Run” button in Eclipse/IntelliJ?

§ With C, the compiler is very important
§ It takes your C code and transforms it into machine

code to produce a program binary
§ Runs natively on the hardware – no VM/interpreter

Compilation

8/25/17 CS 220: Parallel Computing 17

§ After you’ve compiled your program and produced
an executable binary, you can run it!

§ You can even copy your program to other similar
machines and it will run
§ Unlike Java/Python, you don’t have to install anything

first

§ However, note “similar” above – the binaries are
platform- and architecture-specific

Program Binaries

8/25/17 CS 220: Parallel Computing 18

§ Your compiled C program will generally only run on
its target architecture and platform

§ If you compiled on a Mac, then the binary won’t work
on Linux

§ If you compile on an x86-based processor (Intel,
AMD), the binary won’t work on ARM (Qualcomm,
Apple, Samsung mobile CPUs, Raspberry Pi…)

§ Java/Python don’t have this limitation!

Platform Differences

8/25/17 CS 220: Parallel Computing 19

1. Preprocessing: perform text substitution, include
files, and define macros. The first pass of
compilation.
§ Directives begin with a #

2. Translation: preprocessed code is converted to
machine language (also known as object code)

3. Linking: your code likely uses external routines (for
example, printf from stdio.h). In this phase, libraries
are added to your code

Phases of C Compilation

1/24/18 CS 220: Parallel Computing 20

§ We’ve seen include statements:
§ #include <stdio.h>

§ Another common use case is constants:
§ #define PI 3.14159
§ Note: no equals sign. This is just simple text

replacement!

§ You can also define macros that essentially cut and
paste reusable code snippets into your work

The C Preprocessor

1/24/18 CS 220: Parallel Computing 21

§ There are two types of includes:
§ #include <blah>
§ #include “blah”

§ When angle brackets are used, the system-wide
library paths are searched

§ With quotes, you are specifying a local path (in the
same folder as your code)

§ In this class, you’ll only need to worry about the
system libraries

Include Paths

1/24/18 CS 220: Parallel Computing 22

§ gcc my_code.c
./a.out
Produces and runs a binary file called ‘a.out’

§ You can also turn on error messages:
gcc -Wall my_code.c

§ And give your program a name:
gcc -Wall my_code.c -o my_prog

Compiling from the Command Line

1/24/18 CS 220: Parallel Computing 23

The last command line option to gcc I recommend is
-fdiagnostics-color.

gcc -fdiagnostics-color -Wall my_code.c -o out.exe

my_code.c:9:6: warning: conflicting types for ‘say_hello’
[enabled by default]
void say_hello(int times) {

^
first.c:5:5: note: previous implicit declaration of
‘say_hello’ was here

say_hello(6);
^

Making Diagnostics Readable

1/24/18 CS 220: Parallel Computing 24

§ More C Background
§ Differences: C vs Java/Python
§ The C Compiler

§ HW0

Today’s Schedule

8/25/17 CS 220: Parallel Computing 25

§ Requires the standard I/O library:
§ #include <stdio.h>

§ Printing text:
§ printf("hi there!\n");

§ We can also print out variables with format strings

Basic Input/Output

8/25/17 CS 220: Parallel Computing 26

§ Let’s look at a print example:
§ printf("<format>", var1, var2, … , varN);

§ The variable list is optional:
§ printf("hello world!\n");
§ Note that we need to provide the newline character

§ This style of I/O tells the C compiler what and where
you want to read or write

Format Strings (1/2)

1/24/18 CS 220: Parallel Computing 27

§ The C compiler looks through your format string to
determine the order to print and in what format:

§ printf("Hello %s, it is January %d.", "Alice", 24);
§ Hello Alice, it is January 24.

§ There are several format specifiers available:
§ %d or %i – integer
§ %s – string
§ %f – floating point
§ … And many more

Format Strings (2/2)

1/24/18 CS 220: Parallel Computing 28

§ If you haven’t already, register for an account on
GitHub

§ Visit the course website for homework instructions
§ See: Assignments à Homework

§ The schedule page also has some information about
using git

GitHub

8/25/17 CS 220: Parallel Computing 29

