
Lecture 25

CS 220: Introduction to Parallel Computing

Introduction to pthreads

§ In computing, a thread is the smallest schedulable
unit of execution
§ Your operating system has a scheduler that decides

when threads/processes will run
§ Threads are essentially lightweight processes
§ In MPI, we duplicated our processes and ran them all

at the same time (in parallel)
§ With pthreads, a single process manages multiple

threads

Threads

4/16/18 CS 220: Parallel Computing 2

§ Threads are the most important concept you will
learn in this class

§ In the past, you could get away with writing serial
programs

§ Today, we live in a world of asynchronous, multi-
threaded code
§ Crucial for building fast, efficient applications

Why Learn Threads?

4/16/18 CS 220: Parallel Computing 3

§ MPI executes multiple
processes in parallel

§ When we specify -n 8, we’ll
get 8 processes
§ MPI will also distribute

them across machines

§ Each process gets a unique
rank
§ Helps us divide workload

MPI: Photocopier

4/16/18 CS 220: Parallel Computing 4

§ Each thread can be
unique and do something
different
§ Or you can make many

threads that all do the
same thing

§ More flexible than MPI
§ Also can be more difficult

to manage

Threads: 3D Printer

4/16/18 CS 220: Parallel Computing 5

* Note: I may be slightly overselling threads here…

§ pthreads is short for POSIX Threads
§ POSIX - Portable Operating System Interface

§ POSIX is an operating system standard that helps
ensure compatibility across systems
§ If your program conforms to the POSIX standard, then

it’ll compile and run on any compliant OS

§ For instance, we can compile your C programs on
macOS, Linux, FreeBSD, Solaris, and more

Posix Threads

4/16/18 CS 220: Parallel Computing 6

§ Lightweight processes
§ Created by processes to do some subset of the work
§ Rather than passing messages, threads use

shared memory.
§ All the threads have access to internal variables,

whereas with MPI we had to explicitly send our state
information to another process

What are Threads?

4/16/18 CS 220: Parallel Computing 7

§ You may want your program to do two things at the
same time

§ For example, download a file in one thread and show
a progress bar and dialog with another

§ User interfaces are often
multi-threaded
§ Helps hide the fact that CPUs

can only do one thing at a time

Common Uses for Threads (1/2)

4/16/18 CS 220: Parallel Computing 8

§ Games often have a main event loop and several sub
threads that handle:
§ Graphics rendering
§ Artificial Intelligence
§ Responding to player inputs

§ In a video encoder, you may split the video into
multiple regions and have each thread work on them
individually

Common Uses for Threads (2/2)

4/16/18 CS 220: Parallel Computing 9

§ Recall: a process is an instance of a program
§ Each process has:

§ Binary instructions, data, memory
§ File descriptors, permissions
§ Stack, heap, registers

§ Threads are very similar, but they share almost
everything with their parent process except for:
§ Stack
§ Registers

Stepping Back: Processes

4/16/18 CS 220: Parallel Computing 10

§ Since threads share the heap with their parent
process, we can share pointers to memory locations

§ A thread can read and write data set up by its parent
process

§ Sharing these resources also means that it’s faster to
create threads
§ No need to allocate a new heap, set up permissions,

etc.

Sharing Data

4/16/18 CS 220: Parallel Computing 11

§ pthreads is just one way to manage lightweight
execution contexts

§ Windows has its own threading model
§ Languages have other features: Go has goroutines

that abstract away some threading details
§ C#: async/await
§ Futures

§ Learning pthreads will help you understand how
these models work

Other Types of Threads

4/16/18 CS 220: Parallel Computing 12

§ As usual, we have a new #include!

§ #include <pthread.h>
§ We also need to link against the pthreads library:

§ gcc file.c –pthread

§ Luckily, we don’t need a special compiler wrapper to
use pthreads (like we did with MPI: mpicc)

Getting Started with pthreads

4/16/18 CS 220: Parallel Computing 13

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine)(void *),
void *arg);

Creating a Thread

4/16/18 CS 220: Parallel Computing 14

Let’s Demo This…

4/16/18 CS 220: Parallel Computing 15

§ num_threads, defined at the top of the source file, is
accessible by all the threads
§ This is a global variable

§ Variables defined within the thread’s function are
private and only accessible by it
§ Remember: each thread gets its own stack

§ If we malloc a struct on the heap and pass it to a
thread, can it access the struct?

Variable Access

4/16/18 CS 220: Parallel Computing 16

§ What’s pthread_t, the type we used to create our
array of threads?

§ This is considered an opaque type, defined internally
by the library
§ It’s often just an integer that uniquely identifies the

thread, but we can’t rely on this
§ For example, we shouldn’t print out a pthread_t

pthread_t

4/16/18 CS 220: Parallel Computing 17

§ The second parameter we pass in is the pthread
attributes

§ These can include the stack size, scheduling policies,
and more

§ For now we are fine with the defaults, so we pass in
NULL

attr

4/16/18 CS 220: Parallel Computing 18

§ The most important part of pthread_create is the
start routine

§ This function is called by the pthread library as the
starting point for your thread
§ Passed in as a function pointer

§ Pointers are back, whoo hoo!!!
§ Just like how they sound: they’re a pointer to a specific

function

start_routine

4/16/18 CS 220: Parallel Computing 19

§ The last argument to pthread_create is “arg”
§ This can be anything we want to pass to the thread
§ If we wanted to have MPI-style ranks, we can pass in

a rank here
§ If we were implementing P2 with pthreads, we’d want

to pass in the start and end points of our mining
thread

arg

4/16/18 CS 220: Parallel Computing 20

§ int pthread_join(pthread_t thread, void **value_ptr);

§ The pthread_join function waits for a pthread to finish
execution (by calling return)
§ The return value of the thread is stored in value_ptr

§ This lets our main thread wait for all its children to finish
up before moving on

§ Commonly used to coordinate shutting down the threads,
waiting for their results, and synchronizing our logic

pthread_join

4/16/18 CS 220: Parallel Computing 21

