
Lecture 23

CS 220: Introduction to Parallel Computing

Critical Sections



§ You may have noticed that when we print to the 
terminal, the order changes for every run
§ True for both MPI and pthreads

§ This happens for a couple of reasons:
§ We have no control over the actual execution of 

threads or processes
§ Controlled by the OS scheduler

§ The terminal only accepts one line at a time from a
process (this is why we don’t get jumbled output)

Process Ordering

4/18/18 CS 220: Parallel Computing 2



§ The simplest form of scheduling is “round robin”
§ Go around in a loop and give everybody a little time

§ In reality, operating systems generally use priority 
queues and more advanced logic to choose how to 
run our threads

§ Some threads may be a higher priority than others, 
some may be waiting for I/O to complete, etc…

The Scheduler (1/2)

4/18/18 CS 220: Parallel Computing 3



§ If your computer has multiple CPUs or multiple cores, 
then the scheduler decides which cores run your 
processes

§ If you launch 1000 threads, then the scheduler tries 
to give them all a fair share of the CPU
§ Resource allocation

§ The main thing to remember: we don’t have direct 
control over how the scheduler chooses to run our 
threads

The Scheduler (2/2)

4/18/18 CS 220: Parallel Computing 4



§ Let’s take a look at what happens when multiple 
threads access a global variable at the same time

§ Be very careful with globals!
§ For example: let’s assume you write a program with 

global variable i
§ Later, in a thread, you want to iterate through some 

values and forget to declare a local i

Global Variables

4/18/18 CS 220: Parallel Computing 5



§ When multiple threads have access to a variable, 
race conditions can occur

§ This happens when two threads “race” to read/write 
a value in memory
§ The sequence of events is not controlled

§ Thread 1 wants to subtract 10 from variable A
§ Thread 2 wants to add 2 to variable A
§ Which happens first? What will be the outcome?

Race Condition

4/18/18 CS 220: Parallel Computing 6



§ We have two threads, A and B
§ A and B both want to add 1 to a shared variable, 

count
§ What are the different scenarios that can play out 

here?
§ What happens if we don’t call pthread_join on the 

threads?

Example

4/18/18 CS 220: Parallel Computing 7



§ In general, race conditions are not desirable!
§ Having your code do unpredictable things is almost 

always bad

§ We want to have control on how events unfold

§ In other words, we wish to serialize some portions of 
our programs

§ We can do this with critical sections

Handling Race Conditions

4/18/18 CS 220: Parallel Computing 8



§ A critical section is a block of code that is protected 
from concurrent access

§ We set up a particular region of our code and then 
only allow a single thread to access it at a time

§ How can we implement critical sections?

Critical Section

4/18/18 CS 220: Parallel Computing 9



§ One approach for creating critical sections in our 
code is called busy waiting

§ Wait for your turn in a while loop
§ while (turn != my_thread_id) {

/* Wait … */
}

§ Once it’s your turn, enter the critical section, do your 
work, and then set ”turn” to the next thread when 
you’re done

Busy Waiting

4/18/18 CS 220: Parallel Computing 10



§ The problem with busy waiting is that the threads are 
constantly checking for their turn
§ Your CPU will spike up to 100% usage as the thread 

continues to check, and check, and check…

§ There isn’t much of a speed improvement over a 
serial program because so much wasted work is 
taking place!

§ There has to be a better way…

Busy Waiting: Downsides

4/18/18 CS 220: Parallel Computing 11



§ In parallel programming a mutex ensures that only 
one thread can enter a critical section at a time

§ Mutex: Mutual Exclusion
§ This lets you “lock” part of your code so that other 

threads cannot access it
§ We don’t have the concept of a mutex in MPI… why 

not?

Mutex

4/18/18 CS 220: Parallel Computing 12



§ To create a mutex, use:
§ pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

§ Note the type: pthread_mutex_t
§ Now let’s use the mutex to protect our code:

pthread_mutex_lock(&mutex);
shared_var = shared_var + 1;
pthread_mutex_unlock(&mutex);

Using a Mutex

4/18/18 CS 220: Parallel Computing 13



§ There are other ways to define a critical section
§ We’ll be going through several parallelism primitives 

over the next few class periods
§ Shared variables don’t have to be globals

§ You can allocate memory and pass a pointer to your 
threads

Notes

4/18/18 CS 220: Parallel Computing 14



§ Let’s make sure you can run a basic pthreads
application

§ Create some threads and have them modify a global 
variable all at once

§ Then protect access to the variable with a mutex

§ Question: are we benefitting from parallelism here?

Try it Out

4/18/18 CS 220: Parallel Computing 15


