
Lecture 24

CS 220: Introduction to Parallel Computing

Condition Variables

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine)(void *),
void *arg);

Remember: Creating a Thread

4/20/18 CS 220: Parallel Computing 2

§ pthread_create is very specific about what we can
pass in

§ In fact, we can only pass in a pointer
§ We’ve been using (abusing?) this to pass in our

thread ID

§ So how do we pass more than one argument to a
new thread?
§ The answer: structs

Passing Arguments to Threads

4/20/18 CS 220: Parallel Computing 3

struct thread_params {
char thread_name[50];
unsigned int thread_id;
unsigned long nonce;

}

struct thread_params *tp =
malloc(sizeof(struct thread_params));

strcpy(tp->thread_name, "My Thread");
tp->thread_id = 10;

Arg Struct Example

4/20/18 CS 220: Parallel Computing 4

struct thread_params *tp =
malloc(sizeof(struct thread_params));

strcpy(tp->thread_name, "My Thread");
tp->thread_id = 10;

pthread_create(
&thread_handle,
NULL,
thread_func,
tp);

Passing it In

4/20/18 CS 220: Parallel Computing 5

void *thread_func(void *input_ptr) {

struct thread_params *tp
= (struct thread_params *) input_ptr;

printf("Starting Thread: %s\n",

tp->thread_name);

/* Your code here… */

}

Using the Struct

4/20/18 CS 220: Parallel Computing 6

§ We discussed how busy waiting is one way to
prevent access to a critical section

§ Unfortunately, busy waiting is very inefficient!
§ We have a better way: mutexes
§ What about when we want to wait for something to

happen before our thread does its work?
§ For example: I will wait until I receive a “go” message

before I process this file

Waiting for Changes (1/2)

4/20/18 CS 220: Parallel Computing 7

§ We can busy wait on a variable to change
§ Once the change happens, we know we can proceed
§ Once again, this is inefficient

§ Consider:
§ We have two threads, A and B
§ Thread A preprocesses the input file
§ Thread B calculates the statistics
§ In this case, thread B needs to wait for A

Waiting for Changes (2/2)

4/20/18 CS 220: Parallel Computing 8

§ To wait for something to happen, we can use
condition variables

§ Condition variables have two related functions:
§ wait – wait for the condition to become true
§ signal – inform the waiting thread that the condition

has changed

§ When a thread is waiting, it blocks
§ Just like how our MPI programs block when they are

waiting for a message to come in

Condition Variables

4/20/18 CS 220: Parallel Computing 9

§ The big difference between blocking and actively
waiting is efficiency

§ Rather than constantly checking, go to sleep and let
the operating system wake you up when something
happens
§ Are we there yet?

§ Are we there yet?
§ Are we there yet?

§ Are we there yet?

Blocking vs Waiting

4/20/18 CS 220: Parallel Computing 10

§ Initialization is just like a mutex:

pthread_cond_t cond_variable =
PTHREAD_COND_INITIALIZER;

§ Note: to use a condition variable, you also need a
mutex
§ Why? This protects the condition variable logic

Initializing Condition Variables

4/20/18 CS 220: Parallel Computing 11

Thread A:
pthread_mutex_lock(&mutex);
while (!condition) {

/* Note: mutex is released here: */
pthread_cond_wait(&cond, &mutex);

}
/* Do the work we were waiting to do! */
pthread_mutex_unlock(&mutex);

Thread B:
pthread_mutex_lock(&mutex);
/* Do whatever thread A is waiting for us to do ... */
/* Signal the other thread! */
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);

Using Condition Variables

4/20/18 CS 220: Parallel Computing 12

§ We can use condition variables to implement
producer-consumer synchronization

§ Thread 1: Producer – creates the tasks
§ Thread 2: Consumer – waits for tasks and carries

them out
§ This is a widely-used paradigm!

§ Work queues

Producer-Consumer

4/20/18 CS 220: Parallel Computing 13

Thread A: (Consumer)
pthread_mutex_lock(&mutex);
while (!condition) {

/* Note: mutex is released here: */
pthread_cond_wait(&cond, &mutex);

}
/* Do the work we were waiting to do! */
pthread_mutex_unlock(&mutex);

Thread B: (Producer)
pthread_mutex_lock(&mutex);
/* Do whatever thread A is waiting for us to do ... */
/* Signal the other thread! */
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mutex);

Producer-Consumer: Example

4/20/18 CS 220: Parallel Computing 14

§ How to create a thread

§ Busy waiting

§ Mutexes

§ Critical sections

§ Condition variables

pthreads: What we’ve Learned

4/20/18 CS 220: Parallel Computing 15

