
Lecture 28

CS 220: Introduction to Parallel Computing

Introduction to CUDA



§ Project 4
§ Read-Write Locks
§ Introduction to CUDA

Today’s Schedule

5/2/18 CS 220: Parallel Computing 2



§ Project 4
§ Read-Write Locks
§ Introduction to CUDA

Today’s Schedule

5/2/18 CS 220: Parallel Computing 3



§ The official spec is posted now

§ Extra credit

§ Have some fun with it!
§ (if you have time)

Project 4

5/2/18 CS 220: Parallel Computing 4



§ Project 4
§ Read-Write Locks
§ Introduction to CUDA

Today’s Schedule

5/2/18 CS 220: Parallel Computing 5



§ Our concurrency primitives allow us to ensure 
mutual exclusion in our programs
§ Most common: mutex

§ Mutual exclusion helps us prevent race conditions
§ Only one thread is in a critical section at a time

§ Our goal here is atomicity: making the operations in 
the critical section appear to be instantaneous

Atomicity

5/2/18 CS 220: Parallel Computing 6



§ When one thread enters a critical section protected 
by a mutex, other threads have to wait 

§ While this is happening, the thread can carry out 
several operations
§ For example: we want to increment three counters

§ Once the mutex is unlocked, it appears to other 
threads that all 3 increments happened 
simultaneously

§ This is an atomic operation

Atomicity - Critical Sections

5/2/18 CS 220: Parallel Computing 7



§ Atomic operations linearize certain events
§ (make them occur in a particular order)

§ This is important in multithreaded environments: we 
don’t control when threads are scheduled

§ Related concept: atomicity in database systems
§ When performing a transaction, it should appear to 

happen all at the same time – atomically – even 
though multiple operations are taking place
§ Increment bank account, calculate interest, add interest

Linearizability

5/2/18 CS 220: Parallel Computing 8



§ The last pthreads concept we will learn is read-write 
locks:

§ What are read-write locks, and why do we need 
them?

Read-Write Locks

5/2/18 CS 220: Parallel Computing 9



§ Let’s imagine we’re implementing a linked list 
(sounds familiar, right?)
§ insert
§ delete
§ search

§ If we allow concurrent modifications to the list, we 
could end up with big problems!
§ Insert/delete are not thread safe

Parallel Linked List

5/2/18 CS 220: Parallel Computing 10



§ Suppose Thread 0 is executing search and it has 
loaded the address of the next node 
§ curr_p = curr_p->next_p; 

§ Thread 1 races ahead and deletes the next node 
from the list

§ Boom!

List Deletes: Not Atomic

5/2/18 CS 220: Parallel Computing 11



§ Two threads simultaneously execute search and 
insert

§ Thread 0 is executing search and it has loaded the 
address of the next node

§ Thread 1 now inserts a new node after the node 
Thread 0 is referencing, and the new node has the 
desired value. 

§ Thread 0 will “jump” over the new node and report 
that the value it’s searching for is not in the list. 

Inserts: Also not Atomic!

5/2/18 CS 220: Parallel Computing 12



§ One approach: protect the linked list with a mutex

§ What are the downsides?

§ Maybe that is too broad. Could we use a mutex for 
each list item instead?

How do we solve this problem?

5/2/18 CS 220: Parallel Computing 13



§ Any time the node is accessed, the mutex must first 
be locked: 

Mutex Per List Node

5/2/18 CS 220: Parallel Computing 14



§ Note: it is important to acquire the lock on the next 
node before relinquishing the lock on the current

§ This prevents a thread from racing ahead and 
changing the pointer in the current node

§ If the use of our program involves many searches, 
but relatively few insertions and deletions, locking 
and unlocking the nodes will be expensive

Mutex Per Node: Downsides (1)

5/2/18 CS 220: Parallel Computing 15



§ Another issue: list size
§ If the list is long — thousands or millions of nodes —

then we’ll vastly increase the cost of traversing the 
list: adding two function calls for each node! 

§ And one of the calls can block the thread indefinitely! 
§ There has to be a better way!

§ (What we all say constantly when writing C programs)

Mutex Per Node: Downsides (2)

5/2/18 CS 220: Parallel Computing 16



§ A lock that gives multiple “readers” simultaneous 
access to the list, but only one “writer” can access 
the list at a time

§ The basic idea is that we want an object similar to a 
mutex controlling access to the list

§ However, instead of a single lock function, we’ll have 
two lock functions…

Read-Write Locks

5/2/18 CS 220: Parallel Computing 17



§ First function: lock the list for reading
§ Any thread that wants to only read the list can 

proceed

§ Second function: lock the list for writing
§ Waits until all reads are done, gains exclusive access 

to the list, and performs the write
§ This is just like a normal mutex

Linked List with R-W locks

5/2/18 CS 220: Parallel Computing 18



Implementation 1 Thread 2 Threads 3 Threads 4 Threads
Read-Write Locks 2.48 4.97 4.69 4.71
One Mutex 2.50 5.12 5.04 5.11
Mutex Per Node 12.00 29.60 17.00 12.00

Benchmarking Threaded LL

5/2/18 CS 220: Parallel Computing 19

1000 initial entries, 100,000 total list operations:
80% search, 10% insert, 10% delete



§ Project 4
§ Read-Write Locks
§ Introduction to CUDA

Today’s Schedule

5/2/18 CS 220: Parallel Computing 20



§ In the old days, video cards were simple devices
§ Rendering was done on the CPU
§ Unfortunately, this is extremely slow

§ Imagine a low resolution computer screen: 800x600 
pixels

§ To render one frame, we have to iterate through all the 
pixels and update them MANY times per second

§ GPUs were created for this specific type of task

Graphics Processing Units

5/2/18 CS 220: Parallel Computing 21



§ To iterate through a rectangle, we need two for loops
For (width of the display) {

For (height of the display) {
Update pixel i, j 

}
}

§ On a 800x600 screen, this is 480,000 pixels
§ Wouldn’t it be better to have 480,000 cores that only 

needed to do one thing?

Rendering a Frame

5/2/18 CS 220: Parallel Computing 22



§ Naturally, these differences lead to changes in how 
we think about implementing our programs

§ Nvidia has a nice (but simplistic) video from the folks 
at Mythbusters that “compares” the two:
§ https://www.youtube.com/watch?v=-P28LKWTzrI

GPUs vs CPUs

5/2/18 CS 220: Parallel Computing 23

https://www.youtube.com/watch?v=-P28LKWTzrI


Enlightening YouTube Comments

5/2/18 CS 220: Parallel Computing 24



§ Originally, GPUs were designed for a specific task: 
graphics
§ (surprise!)

§ With games pushing the envelope, GPUs became 
real powerhouses
§ Even literally: these things can consume major energy 

and put out lots of heat!

§ In the early 2000s, we began to see General Purpose 
Computing on Graphics Processing Units (GPGPU) 

General Purpose GPU Programming

5/2/18 CS 220: Parallel Computing 25



§ In the early days of GPGPU, programming was 
difficult

§ Programmers often had to “trick” graphics APIs to do 
the work they wanted
§ Direct3D
§ OpenGL

§ These APIs are designed specifically for graphics. 
Trying to bend them towards general computations 
was quite difficult

Programming GPUs

5/2/18 CS 220: Parallel Computing 26



§ Eventually, GPGPU became so popular that the 
graphics card manufacturers began to support it

§ Nvidia: CUDA
§ ATI (now AMD): Stream
§ Apple/Industry Group: OpenCL

§ Now AMD supports OpenCL as well

GPU Programming APIs

5/2/18 CS 220: Parallel Computing 27



§ CUDA is the most popular API, and Nvidia currently 
has a strong lead in scientific GPGPU applications 
and machine learning
§ However, it’s worth noting that many of today’s Bitcoin 

miners use AMD hardware with OpenCL miner apps

§ Originally CUDA stood for Compute Unified Device 
Architecture
§ Now it’s just… CUDA

CUDA

5/2/18 CS 220: Parallel Computing 28



§ GPUs are much less standardized than CPUs
§ In this class, we’ll be using Nvidia’s terminology for 

GPU concepts
§ In general, OpenCL et al have similar constructs

§ Nvidia GPUs consist of one or more “streaming 
multiprocessors” (SM or SMXs)
§ Each SM has 8 or more cores and a control unit

Terminology

5/2/18 CS 220: Parallel Computing 29



§ Most of the machines in the department have CUDA 
capable GPUs and the software installed

§ As discussed before, we’ll be using the jet machines

§ Once again, we’ll need to use a slightly different 
compiler to build our programs
§ Running them works as usual, though!

Department Hardware

5/2/18 CS 220: Parallel Computing 30



§ 192 CUDA Cores

§ 1889 MBytes memory (shared with system)

§ GPU Clock rate: 852 MHz

§ Max threads per multiprocessor: 2048

Jet Hardware

5/2/18 CS 220: Parallel Computing 31



§ You can use CUDA with MPI
§ There is even an API that shares both system 

memory and GPU memory across systems
§ We won’t be doing this, though

§ One thing at a time is good enough J

CUDA + MPI

5/2/18 CS 220: Parallel Computing 32


