
Lecture 3

CS 220: Introduction to Parallel Computing

Functions and Pointers



§ Submitting Assignments with GitHub

§ Functions and Pointers

§ Wrapping up HW0 (if needed)

Today’s Agenda

1/26/18 CS 220: Parallel Computing 2



§ Submitting Assignments with GitHub

§ Functions and Pointers

§ Wrapping up HW0 (if needed)

Today’s Agenda

1/26/18 CS 220: Parallel Computing 3



§ In 220, we’ll be using git to manage our code

§ git (and source control in general) is used extensively 
in industry, science, and more

§ GitHub is a service that wraps a nice web interface
and hosting platform around git

§ For some tips, see the course schedule page

git

1/26/18 CS 220: Parallel Computing 4



§ To submit your work, you’ll upload it to GitHub

§ There are several ways to accomplish this, including:
1. The web interface
2. The desktop client
3. Command line

§ As long as your changes show up on the site, that’s 
all you need to do to submit!
§ We’ll collect the git repositories after the deadline

Homework/Project Submission

1/26/18 CS 220: Parallel Computing 5



Demo: git workflow

1/26/18 CS 220: Parallel Computing 6



§ Submitting Assignments with GitHub

§ Functions and Pointers
§ Wrapping up HW0 (if needed)

Today’s Agenda

1/26/18 CS 220: Parallel Computing 7



§ Functions are defined in C like this:

<return type> <function name>(<argument list>) {
... 

}

§ If the function does not return a value, the return type 
is void

§ If there are no arguments, then the argument list is 
void (not required)

C Functions

1/26/18 CS 220: Parallel Computing 8



What happens when we call a function?
1. System makes a note of the return address
2. Storage is set up for “formal args”
3. “Actual” args are copied into formal args
4. Control branches to first statement of function
5. Execute function!
6. Copy return value into memory
7. Jump back to the return address

Calling a Function

1/26/18 CS 220: Parallel Computing 9



§ ”Formal” arguments are specified in your function:

void location(int x, int y);

§ “Actual” arguments are the actual (raw) values 
passed into the function:

location(2, 4);

Formal vs. Actual Arguments

1/26/18 CS 220: Parallel Computing 10



§ In C, everything is passed by value
§ This means that when you call a function, like:

location(2, 4);
§ Copies will be made of 2 and 4 and passed to the 

location function
§ Changing these values inside the function doesn’t 

have an impact elsewhere
§ They are internal to the function

Passing by Value

1/26/18 CS 220: Parallel Computing 11



§ Sometimes we actually do want to change the value of a 
variable when it’s passed into a function:
int a = 3;
int b = 8;
printf("%d, %d\n", a, b);
swap(a, b);
printf("%d, %d\n", a, b);

§ Prints:
3, 8
8, 3

Passing by Reference (1/2)

1/26/18 CS 220: Parallel Computing 12



§ We need to pass by reference
§ In C, we accomplish this by passing in the memory 

address of the variable:
§ The address is passed by value
§ We can use the address to find the variable in memory

and change it

§ If you have ever heard of pointers in C, this is what 
they’re used for!

Passing by Reference (2/2)

1/26/18 CS 220: Parallel Computing 13



§ & - the ’address of’ operator. When a function takes a 
pointer as an argument, you need to give it an 
address, not the value of the variable

§ int * x_p; - defining a pointer. Note that this doesn’t 
create an integer, it creates a pointer to an integer.

§ Finally when accessing a variable, *x_p is the 
dereference operator – it follows the address and 
looks up the actual value being pointed to
§ Unfortunately, this looks the same as defining it!

New Syntax

1/26/18 CS 220: Parallel Computing 14



Demo: Passing by Reference

1/26/18 CS 220: Parallel Computing 15



§ Submitting Assignments with GitHub

§ Functions and Pointers

§ Wrapping up HW0 (if needed)

Today’s Agenda

1/26/18 CS 220: Parallel Computing 16



§ Use this time to check your HW0 submission
§ It’s due Monday, just in case you ran into problems 

with your setup
§ In that case, stop by Monday office hours or use the 

time now to debug

§ If you’re already done with HW0, then head out and 
have an awesome weekend!
§ But double check that it’s actually up on GitHub first J

HW0

1/26/18 CS 220: Parallel Computing 17


