
Lecture 4

CS 220: Introduction to Parallel Computing

Arrays

§ I updated the VM image on the website
§ It now includes:

§ Sublime text
§ Gitkraken (a nice git GUI)
§ And the git command line tools

Note: Windows

1/30/18 CS 220: Parallel Computing 2

§ Argument Passing in C
§ Compilation Phases
§ Arrays

Today’s Agenda

1/30/18 CS 220: Parallel Computing 3

§ Argument Passing in C
§ Compilation Phases
§ Arrays

Today’s Agenda

1/30/18 CS 220: Parallel Computing 4

§ Coming from the Java or Python world, we’re used to
passing inputs to our functions

§ The result of the function is given to us in the
return value

§ There are situations where this convention does not
hold, but it’s less common

§ This is not the case with C…

Argument Passing Conventions

1/30/18 CS 220: Parallel Computing 5

/* Here's a function that increments
* an integer. */

void add_one(int *i)
{

*i = *i + 1;
}

int a = 6;
add_one(&a); /* a is now 7 */

An Example

1/30/18 CS 220: Parallel Computing 6

§ In C, some of the function arguments serve as outputs
§ Or in the example we just saw, the function argument is

both an input and an output!

§ Some API designers even label these arguments as “in” or
“out” args (example from the Windows API):
BOOL WINAPI FindNextFile(
In HANDLE hFindFile,
Out LPWIN32_FIND_DATA lpFindFileData
);

§ Why?

C ”In/Out” Arguments

1/30/18 CS 220: Parallel Computing 7

§ One reason for this is C does not have exceptions

§ Problem in a Java/Python function?
Throw an exception!

§ In C, the return value of functions often indicates
success or failure (bool)
§ Or a maybe something in between (int) – status code

§ Functions don’t have to be designed this way, but it’s
a very common convention

Error Reporting

1/30/18 CS 220: Parallel Computing 8

§ Return values have to be copied back to the calling
function
§ Say my function returns a bitmap image. The entire

thing is going to get copied!

§ In a language that focuses on speed and efficiency,
updating the values directly in memory is faster

§ Imagine transferring lots of large strings, objects, etc.
around your program, copying them between
functions each and every time

Efficiency

1/30/18 CS 220: Parallel Computing 9

§ So remember: the return value in C might not
actually be the result of the function

§ It may just be an error code or status code

§ It might just be a Boolean
§ True means success, false means failure

§ Or maybe one of the function inputs was modified
directly instead
§ Efficiency benefits

C Argument Passing

1/30/18 CS 220: Parallel Computing 10

§ In C, there’s a difference between
function() and function(void)

§ Void arg: the function takes no arguments

§ Empty arg list: the function may or may not take
arguments
§ If it does, they can be of any type and there can be

any number of them

Void Argument (1/3)

1/30/18 CS 220: Parallel Computing 11

§ Why is this important?
§ First, to understand older code

§ From the C11 standard:
§ “The use of function declarators with empty

parentheses (not prototype-format parameter type
declarators) is an obsolescent feature.”

§ Second, this may lead to incorrect function
prototypes or passing incorrect args in your code

Void Argument (2/3)

1/30/18 CS 220: Parallel Computing 12

So, to sum up:

/* Takes an unspecified number of args: */
void function();

/* Takes no args: */
void function(void);

Void Argument (3/3)

1/30/18 CS 220: Parallel Computing 13

§ Argument Passing in C
§ Compilation Phases
§ Arrays

Today’s Agenda

1/30/18 CS 220: Parallel Computing 14

1. Preprocessing: perform text substitution, include
files, and define macros. The first pass of
compilation.
§ Directives begin with a #

2. Translation: preprocessed code is converted to
machine language (also known as object code)

3. Linking: your code likely uses external routines (for
example, printf from stdio.h). In this phase, libraries
are added to your code

Recall: Phases of C Compilation

1/30/18 CS 220: Parallel Computing 15

§ When we compile our source code, we get an output
binary that is ready to run
§ The steps are mostly invisible to us

§ We can ask the compiler to only execute a subset of
its compilation phases
§ Let’s do just that!

Stepping Through Compilation

1/30/18 CS 220: Parallel Computing 16

§ We can ask gcc to only perform the preprocessing
step using the -E flag:
§ gcc -E my_program.c

§ This will print the preprocessed file to the terminal
§ We can write this output to a file by redirecting the

stdout (standard output) stream:
§ gcc -E my_program.c > my_program.pre

§ … And view with a text editor

Preprocessing

1/30/18 CS 220: Parallel Computing 17

§ We can also view the assembly code generated by
the compiler

§ gcc -S my_program.c
§ Produces my_program.s

§ This representation is very close to the underlying
machine code

§ For a reference on x86-64 processor assembly:
§ https://web.stanford.edu/class/cs107/guide_x86-

64.html

Translating to Assembly Code

1/30/18 CS 220: Parallel Computing 18

§ Finally, we can produce the machine code / object
code representation of the program

§ gcc -c my_program.c
§ Produces my_program.o

§ We can view this with a hex editor
§ hexdump -C my_program.o

Producing Object Code

1/30/18 CS 220: Parallel Computing 19

§ Finally, our object code is linked against the other
necessary libraries to create an executable

§ Nothing to inspect here, but we can always view the
output binary in a hex editor:
§ hexdump -C my_program

Linking

1/30/18 CS 220: Parallel Computing 20

§ Argument Passing in C
§ Compilation Phases
§ Arrays

Today’s Agenda

1/30/18 CS 220: Parallel Computing 21

§ In C, arrays let us store a collection of values of the
same type

§ They are similar to the arrays in Java, and roughly
analogous to the lists in Python
§ However, Python lets us store values of different

types:
§ my_list = [1, 6.8, “San Francisco”]

§ In C, an array is nothing more than a block of memory
set aside for a collection of a particular type

Arrays

1/30/18 CS 220: Parallel Computing 22

§ In Java: int[] numbers = new int[100];
§ In Python: numbers = []
§ In C:

int list[10];
double dlist[15];

§ Note that here, the arrays must be dimensioned
when they’re declared
§ In older versions of C the dimension had to be a

constant

Creating an Array

1/30/18 CS 220: Parallel Computing 23

§ Retrieving the values of an array is the same as it is in
Java:
§ list[2] = 7;
§ list[1] = list[2] + 3;

§ However, one interesting note about C is there is no
boundary checking, so:

list[10] = 7;
dlist[17] = 2.0;

…may work just fine.

Accessing Array Elements

1/30/18 CS 220: Parallel Computing 24

§ We can try modifying out-of-bounds array elements
§ We can even do it in a loop to test the limits

§ Different operating systems / architectures may react
differently

§ Let’s demo this now…

§ At this point, you might be wondering:
§ What is wrong with C?!
§ What is the meaning of life?

Experiment: When will it Break?

1/30/18 CS 220: Parallel Computing 25

§ So we can do things like this in C:
int list[5];
list[10] = 7;

§ Your program may work fine… or crash!
§ It’s never a good idea to do this
§ So why does C let us do it anyway?

Accessing Array Values

1/30/18 CS 220: Parallel Computing 26

§ C favors performance over safety
§ Compare: C program vs Python equivalent
§ Helpful: time command

§ Especially in the glory days of C, adding lots of extra
checks meant poor performance
§ Extra ‘if’ statement for each array access, etc…

§ Sometimes these safety features aren’t necessary
§ Especially for perfect programmers?

§ You can always implement safety features yourself

Safety and Performance

1/30/18 CS 220: Parallel Computing 27

§ Let’s create our list of integers:
§ int list[10];

§ When we do this, C sets aside a place in memory for
the array
§ It doesn’t clear the memory unless we ask it to
§ A common cause of subtle bugs

§ Creating a list of integers initialized to zero:
§ int list[10] = { 0 };

Creating an Array

1/30/18 CS 220: Parallel Computing 28

§ What happens when you retrieve the value of
list[5]?

1. Find the location of list in memory
2. Move to the proper offset:

5 * 4 = byte 20
3. Access the value

§ Accessing list[500] is just moving to a position in
memory and retrieving whatever is there

Memory Access

1/30/18 CS 220: Parallel Computing 29

Visualizing Arrays in Memory

1/30/18 CS 220: Parallel Computing 30

/* Note: can calculate array
* dimensions automatically! */

int list[] = {
0,
1,
15,
2001

};

sizeof(int) = 4 (4 bytes)

4
Elements

(4 * 4) =
16 byte

array

§ We can use the sizeof operator in C to determine
how big things are
§ Somewhat like:

§ len() in python
§ .length in Java, or
§ .size() in Java

§ Much more low-level
size_t sz = sizeof(int);
printf("%zd\n", sz);
// Prints 4 (on my machine)

The sizeof operator

1/30/18 CS 220: Parallel Computing 31

§ Let’s try this out:
int list[10];
size_t list_sz = sizeof(list);

§ Any guesses on the output?

§ On my machine, it’s 40:
§ 40 bytes (10 integers at 4 bytes each)
§ This can be different depending on architecture

§ In C, sizeof(char) is guaranteed to be 1.

Array Size (1/2)

1/30/18 CS 220: Parallel Computing 32

§ Knowing the number of bytes in the array can be useful,
but not that useful

§ Usually we want to know how many elements there are in
an array

§ To do this, we’ll divide by the array type (int - 4 bytes):
int list[10];
size_t list_sz =

sizeof(list) / sizeof(list[0]);
printf("%zd\n", list_sz);
/* Prints 10 (on my machine) */

Array Size (2/2)

1/30/18 CS 220: Parallel Computing 33

§ Arrays in C are actually pointers
int list[5];
list is the same as &list[0];

§ You can’t change what they point at, but otherwise
they work the same

§ So accessing list[2] is really just dereferencing a
pointer that points two memory addresses from the
start of the array
§ …ever think about why we used 0-based arrays in CS?

Behind the Scenes

1/30/18 CS 220: Parallel Computing 34

§ Since arrays are just constant pointers, we have
another way to access them:

list[5]
Is the same thing as:

*(list + 5)

§ Workflow:
1. Locate the start of the array
2. Move up 5 memory locations (4 bytes each*)
3. Dereference the pointer to get our value

We can make this more “fun…”

1/30/18 CS 220: Parallel Computing 35

§ Manipulating pointers in this way is called
pointer arithmetic

§ arr[i];
is the same as

*(arr + i);

§ arr[6] = 42;
is the same as

*(arr + 6) = 42;

Pointer Arithmetic

1/30/18 CS 220: Parallel Computing 36

Visualizing Arrays

1/30/18 CS 220: Parallel Computing 37

int list[] = {
0,
1,
15,
2001

};

sizeof(int) = 4

§ In general, stick with using regular array syntax

§ You may see pointer arithmetic in production code,
but it should only be used in situations that make the
code more understandable

§ Haphazardly showing off your knowledge of pointer
arithmetic is a recipe for confusing code

A Note on Pointer Arithmetic

1/30/18 CS 220: Parallel Computing 38

§ When we pass an array to a function, its pointer-
based underpinnings begin to show

§ If we modify an array element inside a function, will
the change be reflected in the calling function?
§ Why?

§ In fact, when an array is passed to a function it
decays to a pointer
§ The function just receives a pointer to the first

element in the array. That’s it!

Arrays as Function Arguments

1/30/18 CS 220: Parallel Computing 39

§ When an array decays to a pointer, we lose some
information
§ Type and dimension

§ Let’s imagine someone just gives us a pointer
§ Do we know if it points to a single value?
§ Is it the start of an array?

§ Functions are in the same situation: they don’t know
where this pointer came from or where it’s been
§ sizeof doesn’t work as expected

Array Decay

1/30/18 CS 220: Parallel Computing 40

decay.c:22:19: warning: sizeof on array function
parameter will return size of 'int *' instead of

'int []' [-Wsizeof-array-argument]

sizeof(list),

§ To avoid this situation, we need to pass in the size of the array
as well.

§ You may have wondered why the sizes of arrays are always
being passed around in C code
§ This is why!

Avoiding Decay

1/30/18 CS 220: Parallel Computing 41

§ Let’s get started on HW1 (posted on the course
website)

§ This homework introduces you to a few new
functions and gives you a chance to play with arrays

Homework 1: Arrays

1/30/18 CS 220: Parallel Computing 42

