
Lecture 5

CS 220: Introduction to Parallel Computing

Strings

§ C Function Documentation
§ Array Review
§ Strings

Today’s Agenda

1/31/18 CS 220: Parallel Computing 2

§ C Function Documentation
§ Array Review
§ Strings

Today’s Agenda

1/31/18 CS 220: Parallel Computing 3

§ Unix has a utility called man – short for ‘manual’
§ Entries in the Unix manual are called ‘man pages’

§ Many times your Google searches will locate man
pages that have been converted to HTML

§ There are several sections of man pages:
1. User Commands
2. System Calls
3. C Library Functions
4. …And many more

C Function Documentation

1/31/18 CS 220: Parallel Computing 4

§ Simple as entering man <query> in your terminal
§ man man

§ You can also specify the section:
§ man 3 printf
§ This is important for our class: we need section 3 for

C functions
§ If you’re not terminal-inclined, I also recommend this

page:
§ http://en.cppreference.com/w/c

Reading man Pages

1/31/18 CS 220: Parallel Computing 5

§ C Function Documentation
§ Array Review
§ Strings

Today’s Agenda

1/31/18 CS 220: Parallel Computing 6

§ An array can contain several values of the same type
§ Declare them like so: int my_array[100];
§ Under the hood, arrays behave much like pointers:

numbers[i] *(numbers + i)
§ When you pass an array to a function, it decays to a

pointer
§ We lose both type and dimension
§ When this happens, we can’t use sizeof to get the

number of elements in the array

Array Review

1/31/18 CS 220: Parallel Computing 7

§ Here’s a question: why do we have to use & here?
printf("Enter value %d: ", i);
scanf("%f", &numbers[i]);

§ Arrays are basically pointers, so we shouldn’t need to
get the address, right?

§ Recall what’s going on behind the scenes:
numbers[i] *(numbers + i)

§ We’re dereferencing the pointer to get the value it
points at

Thinking About Arrays & Pointers

1/31/18 CS 220: Parallel Computing 8

§ This means that we could do something like:
 scanf("%d", &(*(&list[0])));

§ Which could be written:
 scanf("%d", &(*(&(*(list + 0)))));

§ Yeah, that’s really clear!
§ The thing to remember:

§ When you access an array element with [], C is
automatically dereferencing the pointer for you

Arrays & Pointers

1/31/18 CS 220: Parallel Computing 9

§ C Function Documentation
§ Array Review
§ Strings

Today’s Agenda

1/31/18 CS 220: Parallel Computing 10

§ In C, strings are nothing more than an array of
characters:

char str[] = "Hello World!";
Or, as a pointer:

char *str = "Hello World!";
§ Note, there is a difference between these two

examples!
§ Array version: can be modified
§ Pointer version: cannot be modified

C Strings

1/31/18 CS 220: Parallel Computing 11

§ When you initialize a string like this:
char str[] = "Hello World!";

§ The contents will be copied into the array and you
can modify them (it is mutable)

§ But when you do this:
char *str = "Hello World!";

§ You’re just creating a pointer to a string literal
§ Embedded into your program (immutable)

Mutability

1/31/18 CS 220: Parallel Computing 12

§ Let’s look at a C string:

§ Note how our string contains 6 characters, but the
array representation has 7

§ The \0 is the NUL byte, a control character
§ We write it with two characters, but in memory it only

takes the space of a single character

Strings as Arrays

1/31/18 CS 220: Parallel Computing 13

§ First, the presence of the NUL byte indicates a string
rather than just a plain old array of characters

§ As we know, we can’t always reliably determine how
large an array is unless we keep track of its size
§ Array decay
§ When working with the C string library, this would be

extremely cumbersome!

§ NUL allows the string manipulation functions to
determine where the string ends

What’s the use of NUL?

1/31/18 CS 220: Parallel Computing 14

§ There is a subtle difference between a plain
character array and a string

§ A string is terminated by NUL (\0)
§ If you use a function that expects a string, make sure

it contains the NUL byte
§ Not doing so will likely lead to segmentation violations

(invalid memory accesses)
§ Why?

Character Arrays vs. Strings

1/31/18 CS 220: Parallel Computing 15

§ #include <string.h>
§ strcpy – copy one string to another
§ strcat – concatenate two strings

§ strcmp – test for string equality
§ strlen – returns the length of the string (ignoring \0)
§ strtok – tokenize the string (split it up)
§ Documentation available in the man pages

The C String Library

1/31/18 CS 220: Parallel Computing 16

§ Let’s say you want to copy one string into another
char str1[] = “Hello World!”;
char *str2 = str1;

§ This doesn’t make a copy; it just points to str1
§ What about:

char str2[] = str1;
§ Nope:

error: array initializer must be an
initializer list or string
literal

Copying a String (1/3)

1/31/18 CS 220: Parallel Computing 17

§ We could loop through the array and copy each
character into the other, but that’s a lot of work

§ Better solution: strcpy:
char str1[] = "Hello World!";

char str2[12];
strcpy(str2, str1);
printf("%s\n", str2);

§ But wait… This code has a big problem: array size

Copying a String (2/3)

1/31/18 CS 220: Parallel Computing 18

§ Let’s fix our bug:
char str1[] = "Hello World!";

char str2[13];
strcpy(str2, str1);
printf("%s\n", str2);

§ We could also create a much larger array to copy into
§ strcpy will go ahead and fill the rest with \0

Copying a String (3/3)

1/31/18 CS 220: Parallel Computing 19

§ Let’s greet the user:
char str[100];
printf("Enter your name: ");
scanf("%s", str);
printf("Hi, %s!\n", str);

§ Wait a minute! Where’s our &?!
§ Well, remember that when we see the [] brackets,

we’re grabbing the actual values (via dereference)
§ The array name only = a pointer to the first element

Reading a String

1/31/18 CS 220: Parallel Computing 20

char str[] = "Hello";

/* Does not include \0: */
printf("Length = %zd\n", strlen(str));

Getting String Lengths

1/31/18 CS 220: Parallel Computing 21

Demo: Working with Strings

1/31/18 CS 220: Parallel Computing 22

