
Lecture 9

CS 220: Introduction to Parallel Computing

Structs and Dynamic Memory



§ Structs
§ Memory Allocation

Today’s Agenda

2/9/18 CS 220: Parallel Computing 2



§ Structs
§ Memory Allocation

Today’s Agenda

2/9/18 CS 220: Parallel Computing 3



§ C structs allow us to create groups of data
§ Do not have to be all the same type like arrays

§ These structures can contain multiple variables

§ With structs, we can implement something similar to 
object-oriented programming found in Java or 
Python
§ However, rather than embedding data and methods, 

structs only contain data
§ Pure separation of concerns

Structs

2/9/18 CS 220: Parallel Computing 4



struct struct_name {

int first_integer;
int second_integer;
float single_float;

};

Defining a Struct (1/2)

2/9/18 CS 220: Parallel Computing 5



struct user_data { 
int account_number;
char first_name[100];
char last_name[100]; 

}; 

Defining a Struct (2/2)

2/9/18 CS 220: Parallel Computing 6



struct account user1;
/* Or, initialize to zero: */
struct account user1 = { 0 };

Creating a Struct

2/9/18 CS 220: Parallel Computing 7



Use dot notation:

struct account user1;
user1.account_number = 12;
/* Doesn't work: */
user1.first_name = "Matthew";
/* Why? */

Setting Values

2/9/18 CS 220: Parallel Computing 8



struct account user1;
user1.account_number = 12; 
strcpy(user1.first_name, "Matthew");
printf("%s\n", user1.first_name);

Copying in Strings

2/9/18 CS 220: Parallel Computing 9



Here, we use arrow notation. Why?

void check_account(struct account *user1) {

user1->account_number = 100;

printf("%s\n", user1->first_name);

} 
/* Equivalent: */

(*user1).account_number = 100;

Pointers to Structs

2/9/18 CS 220: Parallel Computing 10



§ Q: Are structs passed like our regular primitives (by 
value), or like arrays (essentially passed by 
reference)?
§ A: by value

§ Q: In other words, do we make copies when we pass 
a struct around?
§ A: Yes.

§ Q: Can we have structs inside of structs?
§ A: Absolutely!

A Few Questions…

2/9/18 CS 220: Parallel Computing 11



§ Structs
§ Memory Allocation

Today’s Agenda

2/9/18 CS 220: Parallel Computing 12



§ You may have wondered why we often set up our 
arrays with a fixed size ahead of time

§ For example, char line[500];
§ This simplifies programming in C

§ However, we often need to cope with changing 
requirements in our programs
§ We need dynamic memory allocation!

Dynamic Memory Allocation

2/9/18 CS 220: Parallel Computing 13



§ Dynamic memory is allocated on the Heap

§ Use dynamic memory when:
§ You need a large block of memory
§ You want to keep a variable around for a long time

§ Great in theory, but can be difficult in practice

§ We’re used to languages like Java and Python that 
manage memory for us
§ In C, we need to do the heavy lifting

The Heap

2/9/18 CS 220: Parallel Computing 14



§ #include <stdlib.h>
§ void * malloc(size_t size);

§ Remember the size_t type from our sizeof operator?
§ This sets aside a block of memory for us to use

§ We just need to give it the size

§ Reminder: there is no guarantee the memory set 
aside is zeroed out

Allocating Memory: malloc

2/9/18 CS 220: Parallel Computing 15



§ #include <stdlib.h>

§ void free(void * ptr_p);

§ Every malloc() must also have a free()
§ Without freeing the memory, you introduce 

memory leaks
§ Imagine doing this inside an infinite loop

Freeing Memory: free()

2/9/18 CS 220: Parallel Computing 16



/* What happens here? */
int *i = malloc(sizeof(int));
*i = 3; 
printf("%d\n", *i); 
free(i);
printf("%d\n", *i); 

Use after free()

2/9/18 CS 220: Parallel Computing 17



§ calloc() – clears the memory and allocates it
§ void * calloc(size_t num, size_t size);

§ realloc() – reallocates (resizes) dynamically-allocated 
memory
§ void * realloc(void *ptr, size_t new_size);

Dynamic Memory Functions

2/9/18 CS 220: Parallel Computing 18


