CS 326: Operating Systems

=xploring the OS

Lecture 2

Today's Schedule

= Development Environment Setup

= Exploring xv6

CS 326: Operating Systems

Today's Schedule

- Development Environment Setup

= Exploring xv6

CS 326: Operating Systems

Writing C Programs [1/3]

Using an IDE (like Eclipse, Intellid, etc) is less common in
the C world

Many C developers prefer to use a text editor and a

terminal to write their programs
Text editor: edit, save

Terminal: compile, run

There's information on the course schedule page for
setting up your editor and C compiler

CS 326: Operating Systems

Writing C Programs [2/3]

[NON) matthew@silicon — -zsh — 80x37

q [silicon:~/Desktop]$ gcc -Wall —-g calibrate.c
C calibrate.c x calibrate.c:8:10: fatal error: 'linux/jiffies.h' file not found
#include <linux/jiffies.h>
#define DELAY_CALIBRATION_TICKS < 100) 7?7 1 : Awwm/;gwwwww
#define MAX_DIRECT_CALIBRATION_RETRIES 5 - 1 error generated.
[silicon:~/Desktop]$

calibrate_delay_direct(

pre_start, start, post_start;
pre_end, end, post_end;
start_jiffies;
timer_rate_min, timer_rate_max;
good_timer_sum = @
good_timer_count 8
measured_times [MAX_DIRECT_CALIBRATION_RETRIES];
-1;
-1;
i;

if (read_current_timer(&pre_start) < 0)
return 0;

Ln1,Col1 TabSize:4 UTF-8 LF cC ®

CS 326: Operating Systems

Writing C

Programs [3/3]

#include <limits.h>
#include <signal.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include <ucontext.h>
#include <unistd.h>

/* Preprocessor Directives */
#define NUM_PROCESSES 100
#define STACK_SIZE 8192

/* This "dummy function" is used to simulate a real CPU workload. It is basically

* just incrementing/decrementing a couple of counters. */
#define RUN_WORKLOAD(count) \

{ unsigned long i, j; for (i = 0, j = UINT_MAX; i < count; ++i, —3); }

/* Process lifecycle phases ¥/
enum process_state {

CREATED,
WAITING,
RUNNING,
TERMINATED,
Yi
Jxx
* Encapsulates process metadata:
* — process ID, name
* - current execution state
* - memory for the runtime stack
* — user-level context information

* - timing information

*/

struct process_ctl_block {
unsigned int pid;
char name[128];
enum process_state state;

/* Process context information %/
char stack[STACK_SIZE];
ucontext_t context;

unsigned int creation_quantum; /* The time slice when process is created */
unsigned int workload; /* How much work this process will do */

unsigned int priority;

/* Wall clock times: %/
double arrival_time; /* When the process gets put into the
double start_time; /* First time the process actually runs
double completion_time; /* When the process completed %/

N zsh

run queue */
&/

matthew@silicon — tmux new -s X — 204x60

59,0-1

0%

[silicon:~/cpusched]$ make
cc scheduler.c -o scheduler

scheduler.c:146:18: warning: 'swapcontext' is deprecated: first deprecated in mac0S 10.6

[-Wdeprecated-declarations]
int result = swapcontext(old_ctx, &pcb->context);
A

Jusr/include/ucontext.h:40:6: note: 'swapcontext' has been explicitly marked deprecated here

__restrict, const ucontext_t * _

int swapcontext(ucontext_t *
A

_restrict) __OSX_AVAILABLE_BUT_...

scheduler.c:173:13: warning: 'getcontext' is deprecated: first deprecated in mac0S 10.6

[-Wdeprecated-declarations]
getcontext(&pcb->context);
A

/usr/include/ucontext.h:37:6: note: 'getcontext' has been explicitly marked deprecated here

int getcontext(ucontext_t %) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_5, __M
A

AC_10_6, __TPHONE...

scheduler.c:177:13: warning: 'makecontext' is deprecated: first deprecated in mac0S 10.6

[-Wdeprecated-declarations]
makecontext (&pcb->context, process, 0);
A

/usr/include/ucontext.h:38:6: note: 'makecontext' has been explicitly marked deprecated here
void makecontext(ucontext_t ¥, void (¥)(), int, ...) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_...
A

scheduler.c:397:5: warning: 'getcontext' is deprecated: first deprecated in mac0S 10.6

[-Wdeprecated-declarations]
getcontext(&g_main_ctx);
A

fusr/include/ucontext.h:37:6: note: 'getcontext' has been explicitly marked deprecated here

int getcontext(ucontext_t %) __OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_5, __M
A

4 warnings generated.

[silicon:~/cpusched]$

[silicon:~/cpusched]$ # Uh oh, so many warnings
[silicon:~/cpusched]$ i

AC_10_6, __IPHONE. ..

matthew@silicon

CS 326: Operating Systems

My Recommendation [1/2]

In 326, you are going to be using the terminal and
command line interfaces with your VM a lot

| recommend you to embrace it, learn it, and (maybe)

love it
Sets you up for working in cloud computing, DevOps,
system administration

The interface is all text; facilitates command
composition

If you're not super comfortable with Unix commands,
don't worry! You'll get lots of practice

CS 326: Operating Systems

My Recommendation [2/2]

= Learnvim

= ,..0r emacs, nano, micro, etc.

= The point: know enough about using a terminal text
editor to be able to get things done

= Maybe you won't spend 100% of your time there, but it
can come in handy in a pinch

CS 326: Operating Systems

Other Options

Lots of IDEs have remote editing functionality
rsub (Remote Sublime) is a popular option

Visual Studio Code has very powerful remote editing,
syntax highlighting, autocompletion

FTP/SFTP clients like Cyberduck, Termius, Forklift can
automatically sync your changes with a remote server

Ultimately, use what you're comfortable with
Spending 60 hours learning vim is awesome, but not if
It means you can't get your projects done

CS 326: Operating Systems

Getting Help

When you're working from the terminal, the man
(manual) pages are a great resource for help

Many times your Google searches are just going to
locate man pages that have been converted to HTML!

There are a few sections in the man pages:
User commands

System calls
C library functions

...and more

CS 326: Operating Systems

10

Reading man pages

= man whatever

" man man
= Specify the section like so:
“ man 3 printf

= This is particularly important for our class: we need
section 2 for system calls and section 3 for C
functions

= Man pages also will often explain config files’ syntax and
options

CS 326: Operating Systems

11

Creating an ssh alias

= Please take a look at the Working Remotely page on the
course schedule for more hints!

= The best bit of advice: creating an ssh alias for gojira
= | also highly recommend setting up an ssh key so you
won't need to type your password over and over

CS 326: Operating Systems 12

https://www.cs.usfca.edu/~mmalensek/cs326/schedule/materials/working-remotely.html

Today's Schedule

= Development Environment Setup

= Exploring xv6

CS 326: Operating Systems

13

=Xploring xvo

By building your OS off xv6, you benefit from a lot of

existing code
...but now you might have to read and understand that
code

reading code is a good skill to learn, but it's not always
fun

Let's take a tour of xv6 in just a minute...
To start, how big is the codebase? sloccount can
give us an idea...

CS 326: Operating Systems

14

Make

You'll be using make to buildyour code in this class. Lab

O requires us to modify the Makefile
This tells the make utility what to do

Essentially just a recipe for building your program
Hints:
make —compile kernel

make gemu —compile kernel, user space, create file
system, and run the OS in QEMU

make clean — clean up all build artifacts

CS 326: Operating Systems

15

—xploring

= Take 5 minutes to look around the xv6 codebase
= Find something that you think is interesting

= We'll regroup and go through its structure

CS 326: Operating Systems

16

