
Remembering How to C

CS 326: Operating Systems

Lecture 3

▪ C Background

▪ Lab 1

▪ C Tips

Today’s Schedule

CS 326: Operating Systems 2

▪ C Background

▪ Lab 1

▪ C Tips

Today’s Schedule

CS 326: Operating Systems 3

▪ All the assignments in this course will be in C

▪ This is less about torturing you and more about using

the right tool for the job

▪ The C programming language was invented around

1970

▪ It’s old.

▪ It has decades of baggage

▪ Legend has it that Dennis Ritchie invented it while he

was riding around in his horse-drawn carriage

Oh Say Can You C?

CS 326: Operating Systems 4

▪ Nearly all operating systems are written in C

▪ Linux: C!!!

▪ macOS: most of the low-level functionality is C

▪ Windows: C and (some) C++

▪ Android uses the Linux kernel, iOS is a macOS fork

▪ Embedded systems: elevators, refrigerators, routers,

TVs are often written in C

▪ High-performance software is usually written in C

What C is Useful For

CS 326: Operating Systems 5

▪ It’s fast

▪ It’s reasonably high level (at least we don’t have to

program in assembly!)

▪ Still easy to manipulate bits, registers, and other low-

level constructs

▪ We have complete control over memory allocation

▪ Great for interfacing with hardware

Why are OS written in C?

CS 326: Operating Systems 6

Indisputable proof that C is the best:

TIOBE Language Rankings

(see https://www.tiobe.com/tiobe-index/)

CS 326: Operating Systems 7

▪ For the first time in a very long time, it’s starting to look

like C might have some challengers

▪ Nim, Zig, Rust

▪ Rust has built up a fairly large following for systems

programming

▪ Lots of features that make it modern but still highly

performant

▪ Several experimental Rust OS are under development

▪ For now, knowing C is still a valuable skill.

What the Future Will Hold

CS 326: Operating Systems 8

▪ C Background

▪ Lab 1

▪ C Tips

Today’s Schedule

CS 326: Operating Systems 9

▪ It’s Lab 1 time… on paper!

▪ Debugging buggy C programs

▪ Split up into groups of 5 (maximum), and I’ll pass out a

paper copy of the lab

▪ The challenge: can you figure out what’s wrong with

these functions without running / compiling them?

▪ Once you’ve worked on these for a bit, let’s regroup to

remind ourselves about all the things that make C “fun”

Let’s C What You’ve Got

CS 326: Operating Systems 10

▪ C Background

▪ Lab 1

▪ C Tips

Today’s Schedule

CS 326: Operating Systems 11

▪ In C, function arguments are passed by value

▪ NOT pass by reference

▪ This means that changes to the argument inside the

function are not reflected outside the function

▪ If you want to make outside changes to a variable

passed to a function, then you must use pointers

▪ They are still passed by value; the value is the memory

address

▪ Arrays are (kind of) fancy syntax for pointers so you

can modify their contents in a function

Passing by Value

CS 326: Operating Systems 12

▪ Although C only supports passing by value, we can

implement pass by reference with pointers

▪ After passing the value of the pointer (memory

address), we can dereference it (* operator) to

retrieve/change the data it points to

▪ & – the ‘address of’ operator.

▪ int * x; – defines a pointer. Note that this doesn’t

create an integer, it creates a pointer to an integer.

▪ It doesn’t matter what type it points to; a pointer is

always going to just be a memory address

Pointers

CS 326: Operating Systems 13

▪ One thing that sets C apart is function arguments are

frequently used for both input and output

▪ e.g., strcpy(dest, src)
▪ dest is modified, src is used as the input

▪ Return values are often used for status codes

▪ Whether or not the function succeeded

▪ C doesn’t have exceptions, so we have to check that

everything worked ourselves by inspecting these!

C Argument Conventions

CS 326: Operating Systems 14

▪ In C, arrays let us store a collection of values of the

same type

▪ C will set aside space for the array in memory:

(num_elements * sizeof(data type))

▪ To simplify, you can think of arrays as a pointer to the

beginning of that memory

▪ Accessing elements means doing pointer arithmetic

Arrays

CS 326: Operating Systems 15

▪ Retrieving the values of an array is the same as it is in

Java:

▪ list[2] = 7

▪ list[1] = list[2] + 8;

▪ List access: find the starting address of list , then add

index * sizeof(data type) bytes

▪ But there is NO boundary checking!

▪ list[500] = x; may work even if list is only made

up of 100 elements

Accessing Array Elements

CS 326: Operating Systems 16

▪ When you initialize a string like this:

▪ char str[] = "Hello world!";

▪ …the contents will be allocated as a mutable array

▪ But when you do this:

▪ char *str = "Hello world!";

▪ …you are only creating a pointer to a string literal

Mutability

CS 326: Operating Systems 17

▪ Let’s look at C strings:

▪ Note how our string contains 6 characters, but the array

representation has 7

▪ The \0 is the NUL byte, a control character

▪ Just like \n , etc., we write it with two characters but it is just

shorthand for a single character

▪ Its value also happens to be 0 (decimal)

▪ C string functions assume this is present; if it’s not, you only

have an array of characters and your program will crash

Strings as Arrays

CS 326: Operating Systems 18

▪ When a C array is passed to a function, we lose its

dimension information

▪ It decays to a pointer (array decay)

▪ This is why we generally pass the size of arrays to

functions

▪ This would be extremely inconvenient with strings, so

using \0 to denote the end of a string is an acceptable

tradeoff

▪ meh!

Array Decay

CS 326: Operating Systems 19

▪ The main function receives command line arguments:

▪ int main(int argc, char *argv[])

▪ We receive two parameters:

▪ argc – the number of command line arguments

▪ argv – the arguments themselves

▪ Some notes:

▪ argc will always be at least 1

▪ argv will always start with the name of your program

Command Line Arguments

CS 326: Operating Systems 20

▪ Remember: C is different than Java or Python

▪ Don’t try to write C in Java or Python style; instead,

embrace the fun

Final Tip

CS 326: Operating Systems 21

