CS 326: Operating Systems
Remembering How to C

Lecture 3

Today's Schedule

= C Background
= Lab 1
= CTips

CS 326: Operating Systems

Today's Schedule

- C Background
= Lab 1
= CTips

CS 326: Operating Systems

Oh Say Can You C?

All the assignments in this course will be in C
This is less about torturing you and more about using
the right tool for the job ‘&

The C programming language was invented around

1970
It's old.

It has decades of baggage

Legend has it that Dennis Ritchie invented it while he
was riding around in his horse-drawn carriage

CS 326: Operating Systems

What C is Useful For

Nearly all operating systems are written in C
Linux: C!lI

MmacOS: most of the low-level functionality is C

Windows: C and (some) C++
Android uses the Linux kernel, iOS is a macOS fork

Embedded systems: elevators, refrigerators, routers,
TVs are often written in C

High-performance software is usually written in C

CS 326: Operating Systems

Why are OS written in C?

It's fast

It's reasonably high level (at least we don't have to

program in assembly!)
= Still easy to manipulate bits, registers, and other low-
level constructs

We have complete control over memory allocation

Great for interfacing with hardware

CS 326: Operating Systems

TIOBE Language Rankings

Indisputable proof that C is the best:

Jan 2021 Jan 2020 Change Programming Language
1 2 C

2 1 v Java

3 3 Python

4 4 C++

5 5 C#

(see https://www.tiobe.com/tiobe-index/)

CS 326: Operating Systems

Ratings
17.38%
11.96%
11.72%
7.56%

3.95%

Change
+1.61%
-4.93%
+2.01%
+1.99%

-1.40%

What the Future Will Hold

For the first time in a very long time, it's starting to look
like C might have some challengers
Nim, Zig, Rust
Rust has built up a fairly large following for systems
programming
Lots of features that make it modern but still highly
performant

Several experimental Rust OS are under development

For now, knowing C is still a valuable skill.

CS 326: Operating Systems

Today's Schedule

= C Background
- Lab 1
= CTips

CS 326: Operating Systems

L et's C What You've Got

It's Lab 1 time... on paper!
Debugging buggy C programs

Split up into groups of 5 (maximum), and I'll pass out a
paper copy of the lab

The challenge: can you figure out what's wrong with
these functions without running / compiling them??

Once you've worked on these for a bit, let's regroup to
remind ourselves about all the things that make C “fun”

S

CS 326: Operating Systems 10

Today's Schedule

= C Background
= Lab 1
= CTips

CS 326: Operating Systems

11

Passing by Value

In C, function arguments are passed by value
NOT pass by reference

This means that changes to the argument inside the
function are not reflected outside the function

If you want to make outside changes to a variable

passed to a function, then you must use pointers

They are still passed by value; the value is the memory
address

Arrays are (kind of) fancy syntax for pointers so you
can modify their contents in a function

CS 326: Operating Systems 12

Pointers

Although C only supports passing by value, we can

implement pass by reference with pointers
After passing the value of the pointer (memory
address), we can dereference it (* operator) to
retrieve/change the data it points to

& —the ‘address of' operator.

int * x; —defines a pointer. Note that this doesn't

create an integer, it creates a pointer to an integer.
It doesn't matter what type it points to; a pointer is
always going to just be a memory address

CS 326: Operating Systems 13

C Argument Conventions

One thing that sets C apart is function arguments are

frequently used for both input and output

€e.g., strcpy(dest, sxc)
dest IS modified, src isused as the input

Return values are often used for status codes
Whether or not the function succeeded

C doesn't have exceptions, so we have to check that
everything worked ourselves by inspecting these!

CS 326: Operating Systems 14

Arrays

In C, arrays let us store a collection of values of the
same type
C will set aside space for the array in memory:

(num_elements * sizeof(data type))

To simplify, you can think of arrays as a pointer to the

beginning of that memory
Accessing elements means doing pointer arithmetic

CS 326: Operating Systems

15

Accessing Array

—lements

Retrieving the values of an array is the same asitis in

Java:
list[2] = 7

list[1] = 1list[2] + 8;

List access: find the starting address of 1list , then add

index * sizeof(data type) bytes

But there is NO boundary checking!
1list[500] = x; maywork evenif list isonly made

up of 100 elements

CS 326: Operating Systems

16

Mutability

When you initialize a string like this:

char str[] = "Hello world!";
...the contents will be allocated as a mutable array

But when you do this:

char *str = "Hello world!";

..you are only creating a pointer to a string literal

CS 326: Operating Systems

17

Strings as Arrays

= Let's look at C strings:

“HELLO!” — | H E L L O !

\0

= Note how our string contains 6 characters, but the array
representation has 7/

= The \o isthe NUL byte, a control character
= Justlike \n, etc., we write it with two characters but it is just
shorthand for a single character

= |ts value also happens to be O (decimal)

= C string functions assume this is present; if it's not, you only
have an array of characters and your program will crash

CS 326: Operating Systems

18

Array Decay

When a C array is passed to a function, we lose its
dimension information

It decays to a pointer (array decay)
This is why we generally pass the size of arrays to
functions

This would be extremely inconvenient with strings, so
using \@ to denote the end of a string is an acceptable

tradeoff
meh!

CS 326: Operating Systems 19

Command Line Arguments

= The main function receives command line arguments:

= 1int main(int argc, char *argv[])
= We receive two parameters:
= argc —the number of command line arguments

= argv —the arguments themselves

= Some notes:
= argc Wwill always be at least 1

= argv Will always start with the name of your program

CS 326: Operating Systems 20

Final Tip

= Remember: C is different than Java or Python
= Don't try to write C in Java or Python style; instead,
embrace the fun &

CS 326: Operating Systems

21

