
Booting Up

CS 326: Operating Systems

Lecture 5

▪ When you turn on your computer, it starts the boot

process

▪ Named for “pulling oneself over a fence by one’s

bootstraps”

▪ Or in other words, doing the impossible

▪ Booting is a series of tasks that ultimately get the

operating system running

▪ The first thing you (may) see is the POST

▪ Power-on Self Test

Booting Up

CS 326: Operating Systems 2

CS 326: Operating Systems 3

▪ After initializing the hardware, your basic input-output

system (BIOS) will start iterating through the disks

connected to your machine

▪ When installing a new OS, you may change the boot

order (what disk to boot from)

▪ On a Mac, you can do this by holding down Option

during boot (other machines: F12, Del…)

▪ Once a bootable disk is found, we proceed to the next

boot phase

BIOS / UEFI

CS 326: Operating Systems 4

▪ The first 512 bytes on a hard drive contain the Master

Boot Record (MBR)

▪ The MBR has two parts:

▪ Boot code

▪ Responsible for continuing the boot process

▪ Partition table

▪ Partition: segment of a disk

▪ Partition 1: Windows; Partition 2: Linux; etc.

▪ Basically contains a pointer to where each partition

starts

Master Boot Record

CS 326: Operating Systems 5

▪ The BIOS looks for a disk

partition that ends with

0x55AA

▪ (Bootable flag)

▪ It copies the MBR into

memory at 0x0000:0x7C00
▪ Segment 0, address

0x7C00

▪ And finally, it starts

executing the first

instruction at 0x7C00 .

Finding a Bootable Partition

CS 326: Operating Systems 6

Start Address Contents Size (bytes)

0x0000 Boot Code 446

0x01BE Partition Table (16 bytes each) 64

0x01FE 0x55 1

0x01FF 0xAA 1

▪ Observations:

▪ 512 bytes is not a lot of bytes

▪ Only four partitions possible

MBR Contents

CS 326: Operating Systems 7

Let’s take a look at a minimal boot code.

Demo: Booting

CS 326: Operating Systems 8

▪ You might be surprised that these offsets are just hard-

coded into the system

▪ However, the BIOS is not particularly smart

▪ Originally was a read-only chip (modern motherboards

have flashable BIOS)

▪ Making the BIOS smarter would make it more complex

and more expensive

▪ Tend to be specialized for the hardware, unlike OS

▪ Modern EFI systems add more complexity, but the

principle remains the same

Hard-Coded Offsets

CS 326: Operating Systems 9

▪ We began executing instructions, so

we’re all done starting the OS, right?

▪ Unfortunately, no…

▪ The first instructions executed are

part of the bootloader

▪ The bootloader is a bit smarter than

the BIOS, and handles the next steps

in the boot process

Continuing the Boot Process

CS 326: Operating Systems 10

▪ The bootloader can understand a variety of file systems

▪ Invent a new file system? Add support to the

bootloader.

▪ It can also provide a list of operating systems available

in a multi-boot configuration

▪ …And it can handle larger disks!

▪ The BIOS is limited to a fixed number of partitions and

disk sizes

Bootloader

CS 326: Operating Systems 11

▪ You can only have one bootloader per disk

▪ Installing one will overwrite another

▪ Windowssssssssss!!!

Bootloader Restrictions

CS 326: Operating Systems 12

▪ The bootloader starts the OS

▪ The kernel initializes its data structures and prepares to

run the first process

▪ Process: a running instance of a program

▪ PID 1, often init, starts the rest of the processes

▪ Gets loaded by the kernel, put in the process table,

and then run by the scheduler

▪ Init is responsible for services, startup tasks, etc.

▪ (systemd on Linux)

Finishing the Boot Process

CS 326: Operating Systems 13

▪ PID 1 is the direct or indirect ancestor of all other processes

▪ When one process launches another, it is that process’s

parent

▪ The newly-launched process is the child

▪ Unfortunately there are no uncle or aunt processes…

▪ The kernel or scheduler is usually considered PID 0, but they

technically aren’t processes.

▪ Some init implementation can do more or less:

▪ System V Init, systemd, upstart, launchd, etc.

▪ You can even write your own!

▪ Boot Linux with flag: init=/path/to/your/init

PID 1, a.k.a. init

CS 326: Operating Systems 14

/* We try each of these until one succeeds. The Bourne shell can be
 * used instead of init if we are trying to recover a really broken machine. */
if (execute_command) {
 ret = run_init_process(execute_command);
 if (!ret)
 return 0;
 panic("Requested init %s failed (error %d).", execute_command, ret);
}
if (!try_to_run_init_process("/sbin/init") ||
 !try_to_run_init_process("/etc/init") ||
 !try_to_run_init_process("/bin/init") ||
 !try_to_run_init_process("/bin/sh")) return 0;

panic("No working init found. Try passing init= option to kernel. "
 "See Linux Documentation/admin-guide/init.rst for guidance.");

Linux: init/main.c

CS 326: Operating Systems 15

[malensek@ruby:~]$ ps -ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Feb21 ? 00:00:57 /usr/lib/systemd/systemd
root 2 0 0 Feb21 ? 00:00:00 [kthreadd]
root 3 2 0 Feb21 ? 00:00:00 [ksoftirqd/0]
root 5 2 0 Feb21 ? 00:00:00 [kworker/0:0H]
root 7 2 0 Feb21 ? 00:01:21 [rcu_sched]
root 8 2 0 Feb21 ? 00:00:00 [rcu_bh]
root 9 2 0 Feb21 ? 00:00:13 [rcuos/0]
root 10 2 0 Feb21 ? 00:00:00 [rcuob/0]

...

malensek 235 1 0 Feb21 tty1 00:00:00 login -- malensek
malensek 282 235 0 Feb21 tty1 00:00:00 bash

Process Lineage

CS 326: Operating Systems 16

▪ On the RISC-V version of xv6, the emulated hardware

provided by QEMU includes a boot ROM

▪ This provides a simple bootloader – no need for us to

write or install one.

xv6 Bootloader

CS 326: Operating Systems 17

▪ There will be two extra credit opportunities today:

▪ Tracing the boot process

▪ Tetris competition

Extra Credit

CS 326: Operating Systems 18

When you start your OS, it looks like this:

xv6 kernel is booting
hart 1 starting
hart 2 starting
init: starting sh
$

▪ How did we get there?

▪ We started with QEMU’s “bootloader”

▪ The final $ is displayed by sh.c

▪ What files were involved in between?

Tracing the Boot Process [1/2]

CS 326: Operating Systems 19

▪ You’ll perform a human backtrace through the code to

find the missing links between the bootloader and sh

▪ Provide a list of files, e.g.:

▪ kernel/file1.c

▪ kernel/file2.c

▪ user/file3.c

▪ Hint: start with kernel/kernel.ld

▪ Write your answer on the board. Closest answer gets

the extra credit!

Tracing the Boot Process [2/2]

CS 326: Operating Systems 20

▪ cd /home2/tetris-os

▪ cat NOTES.txt

▪ Go!

Tetris Competition

CS 326: Operating Systems 21

