CS 326: Operating Systems

B300ting Up

Lecture 5

Sooting Up

When you turn on your computer, it starts the boot

process

Named for "pulling oneself over a fence by one’'s

bootstraps”
Or in other words, doing the impossible

Booting is a series of tasks that ultimately get the
operating system running

The first thing you (may) see is the POST
Power-on Self Test

CS 326: Operating Systems

Award Modular BIOS vb6.88PG, An Energy Star Ally
Copyright (C) 1984-99, Award Software, Inc.

BINIM/BINZM BIOS V1.3 W’Efi

Main Processor : PENTIUM I 918MHz EFA POLLUTION PREVENTER
Memory Testing : 131872K OK + 1824K Shared Memory

Award Plug and Play BIOS Extension v1.8A
Copyright (C) 1999, Award Software, Inc.

CS 326: Operating Systems 3

510S / UEF

After initializing the hardware, your basic input-output
system (BIOS) will start iterating through the disks
connected to your machine

When installing a new OS, you may change the boot
order (what disk to boot from)

On a Mac, you can do this by holding down Option
during boot (other machines: F12, Del..))

Once a bootable disk is found, we proceed to the next
boot phase

CS 326: Operating Systems

Master Boot Record

The first 512 bytes on a hard drive contain the Master
Boot Record (MBR)

The MBR has two parts:
Boot code
Responsible for continuing the boot process
Partition table
Partition: segment of a disk
Partition 1: Windows; Partition 2: Linux; etc.

Basically contains a pointer to where each partition
starts

CS 326: Operating Systems

Finding a Bootable Partition

= The BIOS looks for a disk
partition that ends with

Ox55AA
= (Bootable flag)

= |t copies the MBR into

memory at 0x0000:0x7C00
= Segment O, address

Ox7CO00
= And finally, it starts
executing the first
iInstruction at ox7co0 .

CS 326: Operating Systems

MBR Contents

0x0000 Boot Code 446
Ox01BE Partition Table (16 bytes each) 64
OxO1FE Ox55 1
OxO1FF OxAA 1

= Observations:
= 512 bytes is not a lot of bytes

= Only four partitions possible

CS 326: Operating Systems

Demo: Booting

| et's take a look at a minimal boot code.

CS 326: Operating Systems

Hard-Coded Offsets

You might be surprised that these offsets are just hard-
coded into the system
However, the BIOS is not particularly smart

Originally was a read-only chip (modern motherboards
have flashable BIOS)

Making the BIOS smarter would make it more complex
and more expensive

Tend to be specialized for the hardware, unlike OS

Modern EFl systems add more complexity, but the
principle remains the same

CS 326: Operating Systems

Continuing the Boot Process

We began executing instructions, so

we're all done starting the OS, right?
Unfortunately, no...

The first instructions executed are

part of the bootloader

The bootloader is a bit smarter than
the BIOS, and handles the next steps
IN the boot process

CS 326: Operating Systems

’

§
W/

Micre

Windows

10

Bootloader

The bootloader can understand a variety of file systems
Invent a new file system? Add support to the
bootloader.
It can also provide a list of operating systems available
in a multi-boot configuration

...And it can handle larger disks!
The BIOS is limited to a fixed number of partitions and
disk sizes

CS 326: Operating Systems 11

Bootloader Restrictions

= You can only have one bootloader per disk

= |Installing one will overwrite another
= Windowssssssssss!!!

CS 326: Operating Systems

12

~inishing the Boot Process

The bootloader starts the OS

The kernel initializes its data structures and prepares to
run the first process
Process: a running instance of a program

PID 1, often init, starts the rest of the processes

Gets loaded by the kernel, put in the process table,
and then run by the scheduler

Init is responsible for services, startup tasks, etc.
(systemd on Linux)

CS 326: Operating Systems 13

P

D 1, a.k.a. Init

PID 1 is the direct or indirect ancestor of all other processes
When one process launches another, it is that process'’s

parent
The newly-launched process is the child

Unfortunately there are no uncle or aunt processes...

The kernel or scheduler is usually considered PID 0O, but they
technically aren't processes.

Some init implementation can do more or less:
System V Init, systemd, upstart, launchd, etc.

You can even write your own!
Boot Linux with flag: init=/path/to/your/init

CS 326: Operating Systems 14

Linux: Init/main.c

/* We try each of these until one succeeds. The Bourne shell can be

* used instead of init if we are trying to recover a really broken machine.

it (execute_command) {
ret = run_init_process(execute_command) ;
1T ('ret)
return 0;
panic("Requested init %s failed (error %d).", execute_command, ret);

}

if (!try_to_run_init_process("/sbin/init") ||
Itry_to_run_init_process("/etc/init") ||
Itry_to_run_init_process("/bin/init") ||
I'try_to_run_init_process("/bin/sh")) return 0;

panic("No working init found. Try passing init= option to kernel. "
"See Linux Documentation/admin-guide/init.rst for guidance.");

CS 326: Operating Systems

*/

15

Process Lineage

[malensek@ruby:~1% ps -ef

UID

root
root
root
root
root
root
root
root

malensek
malensek

CS 326: Operating Systems

PID PPID
1 0
2 0
3 2
5 2
7 2
8 2
9 2

10 2
235 1
282 235

S O 0O 00O &M

STIME
Feb21
Feb21
Feb21
Feb21
Feb21
Feb21
Feb21
Feb21

Feb21
Feb21

TTY

-\, -\J -\) -\, -\J -\) -\, .\)

ttyl
ttyl

00:
00
00
00
00
00
00
00

00:
00

TIME

00:
00
00
00
01:
00
00
00

00:
00:

57
00
00
00
21
00
13
00

00
00

CMD
/usr/lib/systemd/systemd
[kthreadd]

[ksoftirqd/0]
[kworkexr/@:0QH]
[Tcu_sched]

[Tcu_bh]

[Tcuos/Q]

[Tcuob/0]

login -- malensek
bash

16

XVo Bootloader

= Onthe RISC-V version of xvo, the emulated hardware

provided by QEMU includes a boot ROM
= This provides a simple bootloader —no need for us to
write or install one.

CS 326: Operating Systems 17

—xtra Credit

= There will be two extra credit opportunities today:
= Tracing the boot process

= Tetris competition

CS 326: Operating Systems

18

Tracing the Boot Process [1/2]

When you start your OS, it looks like this:

xv6 kernel is booting
hart 1 starting

hart 2 starting

init: starting sh

$

= How did we get there?
= We started with QEMU's "bootloader”

= Thefinal $ is displayed by sh.c

= What files were involved in between?

CS 326: Operating Systems 19

Tracing the Boot Process [2/2]

You'll perform a human backtrace through the code to
find the missing links between the bootloader and sh

Provide a list of files, e.qg.:
kernel/filel.c

kernel/file2.c

user/file3.c

Hint; start with kernel/kernel.1d

Write your answer on the board. Closest answer gets
the extra credit!

CS 326: Operating Systems 20

Tetris Competition

= cd /home2/tetris-os
= cat NOTES. txt
= Gol

CS 326: Operating Systems

21

