
Processes and Daemons

CS 326: Operating Systems

Lecture 6

▪ A few clarifications on Lab 2

▪ Project 1

Before we begin

CS 326: Operating Systems 2

▪ Processes

▪ Daemons

Today’s Schedule

CS 326: Operating Systems 3

▪ Processes

▪ Daemons

Today’s Schedule

CS 326: Operating Systems 4

▪ We briefly touched on processes last class

▪ Processes are created with the fork system call

▪ This creates a clone of an existing process

▪ After creating the clone, we know two things:

▪ Which process is the parent

▪ Which process is the child

▪ Logic branches from here, allowing the two processes

to do different work

Processes

CS 326: Operating Systems 5

▪ The cloning approach is particularly nice if you want to

make your application work on multiple CPUs

▪ It doesn’t quite help us if we want to launch a completely

different program, though

▪ For instance, our program wants to start the top

command

▪ There is another function to accomplish this: exec

Dealing with Clones

CS 326: Operating Systems 6

▪ The exec family of functions allows us to launch other

applications

▪ exec replaces the memory space of a clone with a new

program and begins its execution

▪ After fork() : copy of my_program

▪ After exec() : separate process running top … or

whatever you wanted to run!

exec

CS 326: Operating Systems 7

Demo: fork + exec

CS 326: Operating Systems 8

▪ Why not just have a nice C function called

launch_program (or something like that) instead?

▪ Or in other words: why does this need to be broken

into two steps?

▪ Advantages of operating this way:

▪ While the new process is still a clone, it can set up the

target environment for the new application

▪ Unix pipe mechanism is based on this

▪ No restriction on which process will be replaced

(could be the parent or child… usually child)

Why Split fork + exec?

CS 326: Operating Systems 9

▪ The new process can inherit several aspects of its

predecessor

▪ Environment variables: the system path, current working

directory, global program options

▪ Redirection: the new process may be set up to receive

input on its stdin stream from the parent process

Setting up the Environment

CS 326: Operating Systems 10

Demo: env

CS 326: Operating Systems 11

▪ The OS scheduler is responsible for ensuring each process

gets a share of the CPU

▪ Rather than letting processes coordinate this, the scheduler

preempts them

▪ Context switch: swapping process control blocks

▪ Each process can pretend it owns the CPU

▪ When a process is waiting for an I/O device, it gets switched out

until the operation completes

▪ Interleaves I/O and CPU usage

▪ Different scheduling algorithms have different performance

properties

Running Processes

CS 326: Operating Systems 12

▪ scheduler() in proc.c

▪ Process control block in proc.h

▪ swtch.S

Scheduler Implementation

CS 326: Operating Systems 13

▪ Executable machine code

▪ Memory (isolated from other processes)

▪ Call stack

▪ Heap

▪ Metadata

▪ Permissions, ownership

▪ Open files and access isolation

▪ Environment variables

▪ Context

▪ Registers

▪ Stack pointer, program counter

▪ Memory addressing

Process Control Block

CS 326: Operating Systems 14

▪ Information about running processes is stored in

Process Control Blocks (PCBs)

▪ This includes, variables, call stack, heap, etc.

▪ Only one active PCB per CPU

▪ As a program runs, the OS may interrupt it to pause its

execution

▪ To make this mechanism work, we need help from the

hardware

State Information

CS 326: Operating Systems 15

Basic State Transitions

CS 326: Operating Systems 16

On Linux, we have the following possibilities:

▪ R (running)

▪ S (sleeping)

▪ D (disk sleep)

▪ T (stopped)

▪ T (tracing stop)

▪ Z (zombie)

▪ X (dead)

Process States

CS 326: Operating Systems 17

▪ Unused

▪ Used

▪ Sleeping

▪ Runnable

▪ Running

▪ Zombie

xv6 States

CS 326: Operating Systems 18

▪ Zombie processes?! What are those?

▪ A zombie is a child process that has terminated but still

has an entry in the OS process table

▪ Generally happens when the parent doesn’t call wait()
▪ The process table entry lingers until the exit status is

read by the parent

▪ What’s an exit status? Well, that ‘return 0’ at the end of

your C program ain’t just there for show!

▪ (it returns the exit status)

Braaaiiiiiiins

CS 326: Operating Systems 19

▪ There are three ways a process can terminate:

1. Clean exit

2. Error exit

3. Involuntary exit

▪ Regardless of the exit type, the OS:

▪ Deallocates the memory assigned to the process

▪ Closes any open files

▪ Releases locks

▪ Cancels any callbacks/timers

Termination

CS 326: Operating Systems 20

▪ Processes

▪ Daemons

Today’s Schedule

CS 326: Operating Systems 21

▪ Ok, so we have booted our computer and we have

processes running!

▪ Once we’re actually running our OS, the init system

starts several daemons

▪ Background processes

▪ Generally have a ‘d’ suffix:

▪ systemd

▪ syslogd

▪ dhcpcd

What’s next (after init)?

CS 326: Operating Systems 22

▪ Daemons (pronounced

demons) are responsible for

all kinds of non-interactive

tasks

▪ Logging error messages

▪ Configuring the network

▪ Accepting ssh sessions

▪ Similar: Windows services,

look for svchost.exe in task

manager

Daemons

CS 326: Operating Systems 23

▪ If you look up the origin of daemon, you might find “Disk

And Execution MONitor”

▪ Backronym

▪ They were originally named after Maxwell’s Demon from

a thought experiment on the 2nd law of

thermodynamics

▪ Two bodies of different temperatures will eventually

reach equilibrium when brought together

▪ Maxwell’s demon arranges fast- and slow- moving

molecules into separate containers to violate this rule

Why “Daemons”?

CS 326: Operating Systems 24

▪ Let’s say we want to know what daemons are running on a

machine

▪ We can use the ps command to list all processes, and we can

assume daemons will usually end in a ‘d’

▪ Useful commands:

▪ ps -e --no-header

▪ awk to print columns

▪ sed to remove extra information:

▪ sed 's:\(.*\)/.*:\1:g’

▪ Maybe we can turn this into a script?

Confronting our Daemons

CS 326: Operating Systems 25

▪ Daemons do special things, so they’re probably what

makes up the rest of the OS, right?

▪ Not really… Most daemons are regular old “user space”

programs / processes.

▪ To perform privileged operations, we need system calls

▪ Basically the API of your OS

▪ Special function calls that traverse the bounds of

space and time (or user space, at least…)

▪ This is what we’ll talk about next

Are Daemons Processes?

CS 326: Operating Systems 26

