CS 326: Operating Systems

Processes and Daemons

Lecture 6



Before we begin

= A few clarifications on Lab 2

= Project 1

CS 326: Operating Systems



Today's Schedule

= Processes

= Daemons

CS 326: Operating Systems



Today's Schedule

= Processes

= Daemons

CS 326: Operating Systems



Processes

We briefly touched on processes last class
Processes are created with the fork system call
This creates a clone of an existing process

After creating the clone, we know two things:
Which process is the parent

Which process is the child

Logic branches from here, allowing the two processes
to do different work

CS 326: Operating Systems



Dealing with Clones

The cloning approach is particularly nice if you want to
make your application work on multiple CPUs

It doesn't quite help us if we want to launch a completely
different program, though

For instance, our program wants to start the top
command
There is another function to accomplish this: exec

CS 326: Operating Systems



execl

The exec family of functions allows us to launch other
applications

exec replaces the memory space of a clone with a new
program and begins its execution

After fork() :copy of my_program

After exec() :separate process running top ... 0Or
whatever you wanted to run!

CS 326: Operating Systems



Demo: fork + exec

CS 326: Operating Systems



Why Split fork + exec?

Why not just have a nice C function called

launch_program (or something like that) instead?
Or in other words: why does this need to be broken
iINnto two steps?

Advantages of operating this way:
While the new process is still a clone, it can set up the
target environment for the new application
Unix pipe mechanism is based on this

No restriction on which process will be replaced
(could be the parent or child... usually child)

CS 326: Operating Systems



Setting up the Environment

= The new process can inherit several aspects of its
predecessor

= Environment variables: the system path, current working
directory, global program options

= Redirection: the new process may be set up to receive
iINput on its stdin stream from the parent process

CS 326: Operating Systems 10



Demo: env

CS 326: Operating Systems

11



Running Processes

The OS scheduler is responsible for ensuring each process
gets a share of the CPU

Rather than letting processes coordinate this, the scheduler
preempts them

Context switch: swapping process control blocks
Each process can pretend it owns the CPU
When a process is waiting for an I/O device, it gets switched out

until the operation completes
Interleaves I/O and CPU usage

Different scheduling algorithms have different performance
properties

CS 326: Operating Systems 12



Scheduler Implementation

= scheduler() in proc.c
= Process control block in proc.h
= swtch.S

CS 326: Operating Systems

13



Process Control

Slock

Executable machine code

= Call stack
= Heap

Metadata

= Permissions, ownership

= Open files and access isolation
= Environment variables

Context
= Registers

= Stack pointer, program counter

= Memory addressing

CS 326: Operating Systems

Memory (isolated from other processes)

14



State Information

Information about running processes is stored in

Process Control Blocks (PCBs)
This includes, variables, call stack, heap, etc.

Only one active PCB per CPU

As a program runs, the OS may interrupt it to pause its

execution
To make this mechanism work, we need help from the
hardware

CS 326: Operating Systems 15



Basic State Transitions

Blocked

CS 326: Operating Systems

16



Process States

On Linux, we have the following possibilities:

R (running)

S (sleeping)
D (disk sleep)

stopped)

zombie)

T
T (tracing stop)
Z
X

dead)

CS 326: Operating Systems

17



XVO States

Unused
Used
Sleeping

Runnable

Running

Zombie

CS 326: Operating Systems

18



Zombie processes?! What are those?

A zombie is a child process that has terminated but still
has an entry in the OS process table

Generally happens when the parent doesn't call wait()
The process table entry lingers until the exit status is
read by the parent

What's an exit status? Well, that return O’ at the end of

your C program ain't just there for show!
(it returns the exit status)

CS 326: Operating Systems

19



Termination

There are three ways a process can terminate:
Clean exit

Error exit

Involuntary exit

Regardless of the exit type, the OS:
Deallocates the memory assigned to the process

Closes any open files
Releases locks

Cancels any callbacks/timers

CS 326: Operating Systems

20



Today's Schedule

= Processes

- Daemons

CS 326: Operating Systems

21



What's next (after init)?

= Ok, so we have booted our computer and we have
processes running!

= Once we're actually running our OS, the init system
starts several daemons
= Background processes

= Generally have a 'd’ suffix:
= systemd
= syslogd
= dhcpcd

CS 326: Operating Systems

22



Daemons

= Daemons (pronounced
demons) are responsible for
all kinds of non-interactive

tasks
= Logging error messages

= Configuring the network
= Accepting ssh sessions
= Similar: Windows services,
look for svchost.exe intask
manager

CS 326: Operating Systems

23



Why "“Daemons™?

If you look up the origin of daemon, you might find "Disk

And Execution MONitor”
Backronym

They were originally named after Maxwell's Demon from
a thought experiment on the 2nd law of
thermodynamics

Two bodies of different temperatures will eventually
reach equilibrium when brought together

Maxwell's demon arranges fast- and slow- moving
molecules into separate containers to violate this rule

CS 326: Operating Systems 24



Confronting our Daemons

= Let's say we want to know what daemons are running on a

machine
= We can use the ps command to list all processes, and we can
assume daemons will usually end ina 'd’

= Useful commands:
" ps -e --no-header
= awk to print columns
= sed toremove extrainformation:
= sed 's:\(.*\)/.*:\1l:qg’

= Maybe we can turn this into a script?

CS 326: Operating Systems

25



Are Daemons Processes?

Daemons do special things, so they're probably what
makes up the rest of the OS, right?

Not really... Most daemons are regular old “user space”

programs / processes.

To perform privileged operations, we need system calls
Basically the API of your OS

Special function calls that traverse the bounds of

space and time (or user space, at least.. )
This is what we'll talk about next

CS 326: Operating Systems 26



