
System Calls

CS 326: Operating Systems

Lecture 7

▪ The operating system virtualizes the CPU to allow

multiple programs to run concurrently

▪ …or at least with the illusion of concurrency

▪ How does this work at the OS level?

▪ Let’s have a quick thought experiment: how would we

implement this ourselves, right now?

▪ We actually have a pretty good point of reference for

this…

Virtualizing the CPU

CS 326: Operating Systems 2

▪ Trap and translate all instructions to make the process

believe it’s running on some other platform

▪ Now we can monitor everything

▪ If I see printf("Matthew = terrible") ,

I just block it. Perfect!

▪ Inefficient! Roughly doubles the amount of

instructions needed

▪ This is basically building an emulator…

▪ Performance is going to take a big hit

▪ What are the benefits?

Full Virtualization

CS 326: Operating Systems 3

▪ The opposite of full virtualization is direct execution

▪ This allows the process to run directly on the hardware

▪ While doing so, it has complete control

▪ This is the old DOS/Win 3.1 approach

▪ Unfortunately, direct execution has some downsides…

Direct Execution

CS 326: Operating Systems 4

▪ If you give a process full control of the hardware, it can

do whatever it wants

▪ Access other processes’ memory, for instance

▪ Manipulate I/O devices directly

▪ Who cares about disk permissions when you can just

make the device read the files you want?

▪ So while the performance of direct execution is great, it

poses security and reliability risks

Issues with Direct Execution

CS 326: Operating Systems 5

▪ OS designers came to a compromise between full

virtualization and direct execution

▪ Limited direct execution

▪ For certain (safe) operations, processes are given full

access to the CPU/hardware!

▪ Some privileged operations are not allowed, however

▪ In this case, the process must ask the kernel for help

Limited Direct Execution

CS 326: Operating Systems 6

▪ These privileged operations are system calls

▪ System calls include performing I/O, setting the current

time, or launching other processes (fork!)

▪ This is where we derive the division between two halves

of the OS:

▪ User space

▪ Kernel space

System Calls

CS 326: Operating Systems 7

System Calls

CS 326: Operating Systems 8

▪ When you call fork, you aren’t directly calling into kernel

space

▪ The C library is responsible for interfacing with the

kernel

▪ Sets up parameters and return address for the call

▪ Jumps into a predefined memory address in kernel

space

▪ In doing so, execution is transferred to the kernel

Executing System Call

CS 326: Operating Systems 9

▪ In the early days, operating systems allowed processes

to call OS routines directly

▪ This approach has security issues!

▪ CPU Protection Rings enable a separation between

system-level functions and user space applications

▪ Ring 0: highest level of privilege. OS functionality

▪ Rings 1-2: drivers, VM Hypervisors, or simply unused

▪ Ring 3: user applications

Protecting System Calls

CS 326: Operating Systems 10

▪ Instructions are flagged with a permission level

▪ Some of these instructions can only be run in ring 0

▪ Things you can’t do in user mode, a.k.a. ring 3:

▪ Change the protection ring (probably a good idea!!)

▪ Modify the page table

▪ Mapping between virtual and physical memory

addresses (more on this later in the semester!)

▪ Change interrupt handlers

▪ Read/write model-specific registers

Privileged Instructions

CS 326: Operating Systems 11

x86 Protection Rings

CS 326: Operating Systems 12

▪ Machine

▪ Supervisor

▪ User

▪ Let’s take a look at start.c to see this transition…

RISC-V Privilege Levels

CS 326: Operating Systems 13

▪ When the jump occurs between user and kernel space,

we must adjust the privilege level to transition

successfully

▪ This is called a trap, which moves the execution pointer

and changes the privilege level

▪ Once the the operation is complete, a return-from-trap

is executed

▪ Privilege level is dropped, and control is returned to

process routines

Transferring Control

CS 326: Operating Systems 14

▪ During boot, the OS has exclusive control of the

hardware and sets up the trap table

▪ This defines protected regions that may be used for

programs and hardware to interface with kernel space

▪ Examples:

▪ Where to jump to execute a system call

▪ How to handle hardware interrupts

Securing Kernel Space

CS 326: Operating Systems 15

▪ An interrupt is a signal to the processor that some type

of event needs to be handled

▪ Software interrupt: trap

▪ Hardware interrupts inform the OS of a key being

pressed, I/O completing, timer ticks, etc.

▪ Much better than polling: actively checking the state of

all the devices continuously

▪ What happens when too many interrupts are produced?

Interrupts

CS 326: Operating Systems 16

▪ Protection rings are one line of defense between

malicious programs and the kernel

▪ However, we still do not use full virtualization

▪ We don’t inspect every operation before it runs

▪ This would cause a noticeable decrease in

performance

▪ This does open up the OS to vulnerabilities in both the

software and hardware

Security

CS 326: Operating Systems 17

▪ Using the kernel as an intermediary does have

downsides

▪ Still slower than direct execution

▪ This cost is called overhead, the amount of extra time

spent in kernel space

▪ Many privileged operations will be executed twice,

once in each context

Overhead

CS 326: Operating Systems 18

System Call Workflow: Linux ls

CS 326: Operating Systems 19

▪ On Linux, you can use strace to monitor system calls

as processes run

▪ strace ls
▪ Prints each system call in the order they are executed

▪ Memory allocation, opening files, etc

▪ Helpful: filtering

▪ strace -e trace=file ls

▪ (only prints system calls that deal with files)

Tracing System Calls

CS 326: Operating Systems 20

▪ Sometimes the POSIX API maps directly to underlying

system calls

▪ So you’ll call a C library function named X, which then

makes a system call X

▪ A good example: stat()
▪ Gets information about files

▪ See: man 2 stat vs man 3 stat

Is it actually a syscall?

CS 326: Operating Systems 21

▪ On Linux, readdir is implemented via getdents()

▪ OS can conform to POSIX spec with different underlying

syscall implementations

▪ fork() and exec() aren’t the end of the Linux process

saga… we can go deeper: clone()
▪ In fact, fork() is implemented with the clone()

system call!

Layers of Abstraction

CS 326: Operating Systems 22

▪ clone is more flexible than fork: it lets us decide what the

child process shares with the parent

▪ So we can decide whether they share the same heap,

open files, etc.

▪ Here’s a cool one: CLONE_NEWPID

▪ This creates a new process namespace with the child

process being assigned PID 1

▪ And what is PID 1 again, class? Hmm?

▪ It’s almost like this new process is contained in this

namespace…

clone

CS 326: Operating Systems 23

Tracing stat on Linux

CS 326: Operating Systems 24

▪ All these function calls will definitely add overhead

▪ However, this overhead is seen as a worthy trade-off:

without it we’d have:

▪ Processes running amok

(crashing our system, probably)

▪ Security issues

▪ A much more brittle API for creating our programs

Overhead

CS 326: Operating Systems 25

Demo: Tracing readdir

CS 326: Operating Systems 26

