CS 326: Operating Systems

System Calls

Lecture 7

Virtualizing the CPU

The operating system virtualizes the CPU to allow

multiple programs to run concurrently
...or at least with the illusion of concurrency

How does this work at the OS level?

Let's have a quick thought experiment: how would we

implement this ourselves, right now?

We actually have a pretty good point of reference for
this...

CS 326: Operating Systems

Full Virtualization

Trap and translate all instructions to make the process

believe it's running on some other platform

Now we can monitor everything
If | see printf("Matthew = terrible") ,
| just block it. Perfect!

Inefficient! Roughly doubles the amount of
instructions needed

This is basically building an emulator...
Performance is going to take a big hit
What are the benefits?

CS 326: Operating Systems

Direct Execution

The opposite of full virtualization is direct execution

This allows the process to run directly on the hardware
While doing so, it has complete control

This is the old DOS/Win 3.1 approach

Unfortunately, direct execution has some downsides...

CS 326: Operating Systems

Issues with Direct Execution

If you give a process full control of the hardware, it can
do whatever it wants

Access other processes’ memory, for instance

Manipulate I/O devices directly
Who cares about disk permissions when you can just
make the device read the files you want?

So while the performance of direct execution is great, it
poses security and reliability risks

CS 326: Operating Systems

Limited Direct Execution

OS designers came to a compromise between full

virtualization and direct execution
Limited direct execution

For certain (safe) operations, processes are given full
access to the CPU/hardware!

Some privileged operations are not allowed, however
In this case, the process must ask the kernel for help

CS 326: Operating Systems

System Calls

These privileged operations are system calls

System calls include performing I/O, setting the current
time, or launching other processes (fork!)

This is where we derive the division between two halves

of the OS:
User space

Kernel space

CS 326: Operating Systems

System Calls

CS 326: Operating Systems

Process
A
User Space
Kernel Space
Y
Kernel Hardware

—xecuting System Call

When you call fork, you aren't directly calling into kernel
space

The C library is responsible for interfacing with the
kernel
Sets up parameters and return address for the call

Jumps into a predefined memory address in kernel
space

In doing so, execution is transferred to the kernel

CS 326: Operating Systems

Protecting System Calls

In the early days, operating systems allowed processes

to call OS routines directly
This approach has security issues!

CPU Protection Rings enable a separation between

system-level functions and user space applications
Ring O: highest level of privilege. OS functionality

Rings 1-2: drivers, VM Hypervisors, or simply unused

Ring 3: user applications

CS 326: Operating Systems

10

Privileged Instructions

Instructions are flagged with a permission level

Some of these instructions can only be run inring O

Things you can't do in user mode, a.k.a. ring 3:
Change the protection ring (probably a good ideal!)

Modify the page table
Mapping between virtual and physical memory
addresses (more on this later in the semesterl)

Change interrupt handlers

Read/write model-specific registers

CS 326: Operating Systems 11

X806 Protection Rings

Kernel Mode
Ring O

Ring 1

CS 326: Operating Systems

12

RISC-V Privilege Levels

Machine

supervisor

User

Let's take a look at start.c to see this transition...

CS 326: Operating Systems

13

Transferring Control

When the jump occurs between user and kernel space,
we must adjust the privilege level to transition
successfully

This is called a trap, which moves the execution pointer
and changes the privilege level

Once the the operation is complete, a return-from-trap
IS executed

Privilege level is dropped, and control is returned to
process routines

CS 326: Operating Systems 14

Securing Kernel Space

During boot, the OS has exclusive control of the
hardware and sets up the trap table

This defines protected regions that may be used for
programs and hardware to interface with kernel space

Examples:
Where to jump to execute a system call

How to handle hardware interrupts

CS 326: Operating Systems

15

INnterrupts

An interrupt is a signal to the processor that some type
of event needs to be handled

Software interrupt: trap

Hardware interrupts inform the OS of a key being
pressed, I/O completing, timer ticks, etc.

Much better than polling: actively checking the state of
all the devices continuously

What happens when too many interrupts are produced?

CS 326: Operating Systems

16

Security

Protection rings are one line of defense between
malicious programs and the kernel

However, we still do not use full virtualization
We don't inspect every operation before it runs

This would cause a noticeable decrease in
performance

This does open up the OS to vulnerabilities in both the
software and hardware

CS 326: Operating Systems

17

Overhead

Using the kernel as an intermediary does have
downsides
Still slower than direct execution

This cost is called overhead, the amount of extra time

spent in kernel space
Many privileged operations will be executed twice,

once in each context

CS 326: Operating Systems

18

System Call Workflow: Linux Is

()
O
©
Q :
w ls my_dir
@
(%2]
D
4
getdents()
()
(@)
©
o
N
E l
=
v File System (ext4): read() Block
%
(OS Kernel getdents () Device (/devisdal)

CS 326: Operating Systems

19

Tracing System Calls

= On Linux, you can use strace to monitor system calls
as processes run

= strace 1s
= Prints each system call in the order they are executed
= Memory allocation, opening files, etc

= Helpful: filtering
= strace -e trace=file 1s

= (only prints system calls that deal with files)

CS 326: Operating Systems

20

s it actually a syscall?

= Sometimes the POSIX APl maps directly to underlying

system calls
= Soyou'll call a C library function named X, which then
makes a system call X

= A good example: stat()
= Gets information about files

= See: man 2 stat VS man 3 stat

CS 326: Operating Systems

21

L ayers of Abstraction

On Linux, readdir isimplementedvia getdents()

OS can conform to POSIX spec with different underlying
syscall implementations

fork() and exec() arentthe end of the Linux process

saga... we can go deeper: clone()
In fact, fork() isimplemented with the clone()
system call!

CS 326: Operating Systems 22

clone

clone is more flexible than fork: it lets us decide what the
child process shares with the parent

S0 we can decide whether they share the same heap,
open files, etc.

Here's a cool one: CLONE_NEWPID

This creates a new process namespace with the child

process being assigned PID 1
And what is PID 1 again, class? Hmm?

It's almost like this new process is contained in this
namespace...

CS 326: Operating Systems 23

Tracing stat on Linux

o 1s my _dir
O
©
o
n
o) \4
2]
D
stat()
Y
o stat()
(6]
©
o
n
o \d
o
X (OS Kernel

File System (ext4):
stat()

read() Block
Device (/dev/sdal)

CS 326: Operating Systems

24

Overhead

All these function calls will definitely add overhead

However, this overhead is seen as a worthy trade-off:

without it we'd have:
Processes running amok
(crashing our system, probably)

Security issues
A much more brittle API for creating our programs

CS 326: Operating Systems

25

Demo: Tracing readdir

CS 326: Operating Systems

26

