
Inter-Process Communication

CS 326: Operating Systems

Lecture 8

▪ IPC Background

▪ Basic IPC

▪ Signals

Today’s Schedule

CS 326: Operating Systems 2

▪ IPC Background

▪ Basic IPC

▪ Signals

Today’s Schedule

CS 326: Operating Systems 3

▪ We’ve spent considerable time discussing how

processes are isolated

▪ Memory space

▪ Illusion of complete ownership of the CPU

▪ It’s often useful to have processes communicate with

each other

▪ Inter-Process Communication (IPC)

▪ IPC gives us safe, well-defined ways to communicate

Inter-Process Communication

CS 326: Operating Systems 4

▪ Processes need to share data

▪ “Data” can mean a lot of things:

▪ Plain text

▪ An image, video, program

▪ A message containing commands or other types of

information

▪ Without a well-defined interface, getting processes to

communicate descends into madness

Why IPC?

CS 326: Operating Systems 5

1. You double-click a web link saved to your desktop

2. The OS determines which program is responsible for

handling HTTP/S URIs

3. The program is launched if it isn’t already running

4. The OS delivers a message to the program:

5. OPEN https://google.com

An Example

CS 326: Operating Systems 6

https://google.com/

▪ Given what we know about operating systems so far,

what are some ways we can accomplish IPC?

▪ …

How do we do this?!

CS 326: Operating Systems 7

▪ Files

▪ Signals

▪ Pipes

▪ Message Queues

▪ Mapped Memory

▪ Sockets

▪ Shared communication channels (e.g., D-Bus)

IPC Mechanisms

CS 326: Operating Systems 8

▪ Wow, there sure are a lot of ways to do IPC!

▪ It’s almost like we want processes to talk often

▪ Why did we set up all these barriers?

▪ Maybe we could design a new OS where processes

have access to each others’ memory

▪ Wait, what?!

▪ No! Stop! NO! No! No!!!

So Many Options!

CS 326: Operating Systems 9

▪ IPC Background

▪ Basic IPC

▪ Signals

Today’s Schedule

CS 326: Operating Systems 10

▪ We can’t study each IPC mechanism in depth, so we will

focus on the most common

▪ But first, let’s look at:

▪ Files

▪ Message Queues

▪ Shared communication channels

Basic IPC Concepts

CS 326: Operating Systems 11

▪ The most basic form of IPC is done through files

▪ Save a file to disk with one application, open it with

another application

▪ What happens when two applications open the same

file?

▪ Coordinate via file locks

▪ Can lock an entire file or only a portion

Files

CS 326: Operating Systems 12

▪ POSIX Message Queues provide a direct

communication mechanism between processes

▪ Messages are simple text strings

▪ Queues are identified by a name

▪ Great for sending text, but extremely old and out of date

▪ Not supported by macOS

▪ The Linux implementation (apparently?) has bugs that

haven’t been fixed for years

Message Queues

CS 326: Operating Systems 13

▪ The modern way to send messages (and do much

more) on Unix systems is D-Bus

▪ multiplatform system message bus

▪ Allows for IPC, process discovery, broadcasting

▪ Additionally provides remote procedure calls

▪ Process A calls a method exposed by process B

▪ One of the basic building blocks of distributed

computing

D-Bus

CS 326: Operating Systems 14

▪ Windows has a similar concept: Windows Messages

▪ Windows applications are event based

▪ A process is automatically subscribed to a default set

of events

▪ Can subscribe to more if needed

▪ Almost everything that happens on a Windows system

is exposed as these events

▪ Display resolution changed, user logged out, etc.

Windows Messages [1/2]

CS 326: Operating Systems 15

▪ Even UI elements are triggered via Messages:

▪ WM_MOUSEMOVE

▪ Each Windows process has a message queue

associated with it and has some logic along the lines of

the following:

while (true) {

 GetMessage(&msg, NULL, 0, 0);

...

}

Windows Messages [2/2]

CS 326: Operating Systems 16

Undelivered Events

CS 326: Operating Systems 17

▪ Operating systems tend to support their own types of

messaging protocols

▪ The most efficient way to communicate is influenced

by the design of the kernel

▪ macOS: microkernel, emphasis on message passing

▪ Minimalistic OS: get basic mapped memory working

Shared Communication Channels

CS 326: Operating Systems 18

▪ IPC Background

▪ Basic IPC

▪ Signals

Today’s Schedule

CS 326: Operating Systems 19

▪ The first type of IPC we’ll work with in class is signals

▪ Signals are software-based interrupts

▪ (as opposed to the hardware-based interrupts we’ve

been talking about with scheduling)

▪ The kernel uses signals to inform processes when

events occur

▪ NOTE: xv6 does not support signals.

Signals

CS 326: Operating Systems 20

Demo: signal.c

CS 326: Operating Systems 21

▪ What kind of events are reported via signals?

▪ It depends on the kernel

▪ To find out, use:

/bin/kill -l

▪ Wait, what?!

▪ That’s right: kill is used to send signals to processes

▪ It doesn’t necessarily ‘kill’ the process in doing so

▪ But it can!

Events

CS 326: Operating Systems 22

▪ You’ve already been using signals quite a bit (but maybe

didn’t realize)

▪ Ever hit Ctrl+C to stop a running program?

▪ it sends SIGINT to the process

▪ Each signal is prefixed with SIG

▪ Processes can choose how to deal with signals when

they are received

▪ Including ignoring them… usually

Terminating a Process

CS 326: Operating Systems 23

Demo: unkillable.c

CS 326: Operating Systems 24

The Life and Times of Processes

CS 326: Operating Systems 25

The Life and Times of Processes

CS 326: Operating Systems 26

▪ SIGSTOP and SIGKILL cannot be caught or ignored

▪ SIGSTOP – stops (pauses) the process: Ctrl+Z

▪ SIGKILL – terminates the process, no questions asked

▪ You may have heard of kill -9 <pid>

▪ 9 is SIGKILL

Special Signals

CS 326: Operating Systems 27

▪ Occasionally a process

will not respond to a

SIGTERM, SIGINT, etc.

▪ This is the appropriate

time to use SIGKILL

Using kill -9

CS 326: Operating Systems 28

▪ SIGSTOP pauses a running process

▪ What process state will be entered in this case?

▪ SIGCONT tells a paused process to continue

▪ These signals are used for job control in the shell: you

can suspend a process with ^Z (Ctrl+Z)

▪ What else might STOP/CONT be useful for?

Stop and Continue

CS 326: Operating Systems 29

#include <unistd.h>
int alarm(unsigned int seconds);

▪ Here’s another useful signal: SIGALRM

▪ Use the alarm function to set up a timer

▪ When the timer elapses, your program will receive the

SIGALRM event

Alarms

CS 326: Operating Systems 30

▪ You can also handle program-specific signals

▪ SIGUSR1 and SIGUSR2

▪ Programs can implement their own custom signal-

handling logic for these

▪ Added because some programs were doing crazy

things like overriding SIGTERM for custom functions

▪ Unfortunately, you can’t invent your own signals

▪ No SIGAWESOME… yet

Custom Signals

CS 326: Operating Systems 31

▪ Set up a signal handler with signal :

signal(SIGINT, sigint_handler);
▪ Will call sigint_handler every time a SIGINT is

received

▪ Then implement the signal handling logic:

void sigint_handler(int signo) { ... }

Signal Handling

CS 326: Operating Systems 32

1. First, a process initiates the signal

▪ Terminal Emulator: user pressed Ctrl+C, so

▪ I should send SIGTERM to the current process

2. The kernel receives the signal request

3. Permissions are verified

▪ Can this user really send a signal to PID 3241?

4. The signal is delivered to the process

OS Signal Transmission Process

CS 326: Operating Systems 33

▪ If a process is busy doing something, it will be

interrupted by the signal

▪ Jumps from the current instruction to the signal handler

▪ (or performs the default operation if there is no signal

handler)

▪ Jumps back to where it was when the handler logic

completes

Reacting to a Signal

CS 326: Operating Systems 34

▪ Our good friend, the segmentation violation (aka

segfault) is also a signal

▪ SIGSEGV

▪ Bus error: SIGBUS

▪ So if segfaults are getting you down, try blocking them!

▪ What could go wrong?!

Segmentation Violation

CS 326: Operating Systems 35

▪ Not all signals are sent via key combinations from the

shell… We can send them programmatically or via the

command line

▪ Let’s send a SIGUSR1 signal to process 324:

kill -s SIGUSR1 324

▪ Simple as that!

▪ Or, in C:

int kill(pid_t pid, int signum);

Sending a Signal

CS 326: Operating Systems 36

▪ Easy to use

▪ They’re simple!

▪ No need to know anything other than the process ID

▪ Custom functionality: SIGUSR* signals

▪ Example: SIGHUP on apache/nginx/etc

Signals: Pros

CS 326: Operating Systems 37

▪ They’re simple

▪ Can’t send a picture as a signal

▪ Causes a jump in your program logic, whether you want

that or not

▪ (ex) sockets: we can listen when we want messages

Signals: Cons

CS 326: Operating Systems 38

▪ Given how basic signals are

(just a symbolic message… basically an int)

there has to be more to this story

▪ The next type of IPC we look at will be pipes

Wrapping Up

CS 326: Operating Systems 39

