CS 326: Operating Systems
Inter-Process Communication

Lecture 8

Today's Schedule

= |PC Background
= Basic IPC

= Signals

CS 326: Operating Systems

Today's Schedule

- IPC Background
= Basic IPC
= Signals

CS 326: Operating Systems

Inter-Process Communication

= We've spent considerable time discussing how

processes are isolated
= Memory space

= lllusion of complete ownership of the CPU

= |t's often useful to have processes communicate with

each other
= Inter-Process Communication (IPC)

= |PC gives us safe, well-defined ways to communicate

CS 326: Operating Systems

Why IPC?

Processes need to share data
‘Data’ can mean a lot of things:
Plain text
An image, video, program
A message containing commands or other types of
information
Without a well-defined interface, getting processes to
communicate descends into madness

CS 326: Operating Systems

An Example

1. You double-click a web link saved to your desktop

2. The OS determines which program is responsible for
handling HT TP/S URIs

3. The program s launched if it isn't already running
4. The OS delivers a message to the program:

5. OPEN https://[google.com

CS 326: Operating Systems

https://google.com/

How do we do this?!

= Given what we know about operating systems so far,
what are some ways we can accomplish IPC?

CS 326: Operating Systems

IPC Mechanisms

Files

Signals

Pipes

Message Queues

Mapped Memory

Sockets

Shared communication channels (e.g., D-Bus)

CS 326: Operating Systems

So Many Options!

Wow, there sure are a lot of ways to do IPC!

It's almost like we want processes to talk often
Why did we set up all these barriers?

Maybe we could design a new OS where processes

have access to each others' memory
Wait, what?!

No! Stop! NO!'No! No!!

CS 326: Operating Systems

Today's Schedule

= |PC Background
- Basic IPC

= Signals

CS 326: Operating Systems

10

Basic [PC Concepts

= We can't study each IPC mechanism in depth, so we will
focus on the most common

= Butfirst, let's look at:
= Files
= Message Queues

= Shared communication channels

CS 326: Operating Systems

11

Files

The most basic form of IPC is done through files

Save a file to disk with one application, open it with
another application

What happens when two applications open the same
file”?
Coordinate via file locks

Can lock an entire file or only a portion

CS 326: Operating Systems

12

Message Queues

POSIX Message Queues provide a direct
communication mechanism between processes

Messages are simple text strings
Queues are identified by a name

Great for sending text, but extremely old and out of date
Not supported by macOS

The Linux implementation (apparently?) has bugs that
haven't been fixed for years

CS 326: Operating Systems

13

D-Bus

The modern way to send messages (and do much
more) on Unix systems is D-Bus
multiplatform system message bus
Allows for IPC, process discovery, broadcasting
Additionally provides remote procedure calls
Process A calls a method exposed by process B

One of the basic building blocks of distributed
computing

CS 326: Operating Systems 14

Windows Messages [1/2]

Windows has a similar concept: Windows Messages

Windows applications are event based
A process is automatically subscribed to a default set
of events

Can subscribe to more if needed

Almost everything that happens on a Windows system

IS exposed as these events
Display resolution changed, user logged out, etc.

CS 326: Operating Systems 15

Windows Messages [2/2]

= Even Ul elements are triggered via Messages:
- WM_MOUSEMOVE
= Each Windows process has a message queue
associated with it and has some logic along the lines of
the following:
while (true) {
GetMessage(&msg, NULL, @, Q),

CS 326: Operating Systems

16

Undelivered Events

WF] r I
:: E i | t: THH‘lLL‘ l
o che 1. I 1 ——
| s - —————
. ﬂ -
o J.q ! i
bl rud d ey
S F“""“—_ - kil _é
e T AR —— -~ s
he riaimaton you e [I 1 a—— [o i W e vyt he amcomremimm " b
- - — ' 7
m 1 it wene i B iddle: of somaething. Bhe indomation v working on :
|n rr Please tell Miciosolt abow this pioblem.
m I e e craaled an emar iepar that pou can send ba help s mproes
i Imteirest Exploted. Wi il beal thes seport ax canhidenlisl snd sronpmous
[}
1 ‘-_ To see what data this emor ieport corkarns, cick bess
if sl Sand Ence Flepart | [Dont Send |
i :pnn:rrm-- I
Pi ._ .,
W 1
In -
——————ra
I ———— 5 |

g%

CS 326: Operating Systems

ﬁ | rll!“

Internet Ihrlrl-r

Imternet Explorer haz encounts
b close. ‘We aie soiy fos the

17

Shared Communication Channels

= Operating systems tend to support their own types of

messaging protocols
= The most efficient way to communicate is influenced
by the design of the kernel

= macOS: microkernel, emphasis on message passing

= Minimalistic OS: get basic mapped memory working

CS 326: Operating Systems 18

Today's Schedule

= |PC Background
= Basic IPC

- Signals

CS 326: Operating Systems

19

Signals

The first type of IPC we'll work with in class is signals

Signals are software-based interrupts

(as opposed to the hardware-based interrupts we've
been talking about with scheduling)

The kernel uses signals to inform processes when
events occur

NOTE: xv6 does not support signals.

CS 326: Operating Systems

20

Demo: signal.c

CS 326: Operating Systems

21

-vents

What kind of events are reported via signals?
It depends on the kernel

To find out, use:
/bin/kill -1

Wait, what”!
That's right: Kill is used to send signals to processes

It doesn't necessarily kil the process in doing so
But it can!

CS 326: Operating Systems

22

Terminating a Process

You've already been using signals quite a bit (but maybe
didn't realize)
Ever hit Ctrl+C to stop a running program?

it sends SIGINT to the process
Each signal is prefixed with SIG

Processes can choose how to deal with signals when
they are received
Including ignoring them... usually

CS 326: Operating Systems

23

Demo: unkillable.c

CS 326: Operating Systems

24

The Life and Times of

Processes

This 1s Bob.
Bob 15 a
Linux
process.

Like any process, Bob
has his threads, with
whom he shares conkext,
memories and |ove.

And like all processes,
inevitably sometime he
will be killed.

When we gracefully kil
a process with a soft
SIGTERM, . .

«..we give him
the chance to

talk with his

kids about it.
So, the kids
Finish the ¢
tasks. ..

...and say goodbye
to each
other.

That's a
process
| 1fe!

CS 326: Operating Systems

On the other
hand, when
we brutally
ki1l a
process with
a SIGKILL,
we prevent
them from
Finishing their
Job and say
goodbye. ..

...and this s
so SAD!

pAD N
—

S
N

7199\?

25

The Life and Times of Processes

()3
So please, DON'T vuse
y SIGKILL. Give the kids

the chance to leave the Dad'“m;r'
Dad, where are you:

kernel 1in peace.
are we
qoi1ng?

Be nice.

Daniel Steri {turnoff. us)

CS 326: Operating Systems 26

Special Signals

= SIGSTOP and SIGKILL cannot be caught or ignored
= SIGSTOP - stops (pauses) the process: Ctrl+/

= SIGKILL — terminates the process, no questions asked
= You may have heard of kill -9 <pid>

= 9is SIGKILL

CS 326: Operating Systems

27

Using kill -9

Occasionally a process
will not respond to a
SIGTERM, SIGINT, etc.

This is the appropriate
time to use SIGKILL

CS 326: Operating Systems

1IMET0 GO

YoU HAVE TO COME
WITH M ?

OR ELSE T
wHATR (7 |

(@)RAPH.COMIC

YES | PSKED....NO,HE'S BEING
STUBBORN.... NO 1M NOT GOING
TO CARRY Him/

!

28

Stop and Continue

SIGSTOP pauses a running process
What process state will be entered in this case?

SIGCONT tells a paused process to continue

These signals are used for job control in the shell: you
can suspend a process with AZ (Ctrl+Z)

What else might STOP/CONT be useful for?

CS 326: Operating Systems

29

Alarms

#include <unistd.h>
int alarm(unsigned int seconds);
Here's another useful signal: SIGALRM

Use the alarm functionto set up atimer

When the timer elapses, your program will receive the
SIGALRM event

CS 326: Operating Systems

30

Custom Signals

You can also handle program-specific signals

SIGUSR1T and SIGUSR?2
Programs can implement their own custom signal-

handling logic for these

Added because some programs were doing crazy
things like overriding SIGTERM for custom functions

Unfortunately, you can't invent your own signals
No SIGAWESOME... yet

CS 326: Operating Systems

31

Signal Handling

Set up a signal handler with signal :

signal (SIGINT, sigint_handler);
Will call sigint_handler everytime a SIGINT is
received

Then implement the signal handling logic:

void sigint_handler(int signo) { ... }

CS 326: Operating Systems

32

OS Signal Transmission Process

1. First, a process initiates the signal
= Terminal Emulator: user pressed Ctrl+C, so

= | should send SIGTERM to the current process
2. The kernel receives the signal request

3. Permissions are verified
= Can this user really send a signal to PID 32417

4. The signal is delivered to the process

CS 326: Operating Systems

33

Reacting to a Signal

If a process is busy doing something, it will be
interrupted by the signal

Jumps from the current instruction to the signal handler
(or performs the default operation if there is no signal
handler)

Jumps back to where it was when the handler logic
completes

CS 326: Operating Systems

34

Segmentation Violation

= Our good friend, the segmentation violation (aka

segfault) is also a signal
= SIGSEGV

= Bus error; SIGBUS

= S0 if segfaults are getting you down, try blocking them!
= What could go wrong?!

CS 326: Operating Systems

35

Sending a Signal

Not all signals are sent via key combinations from the
shell... We can send them programmatically or via the
command line

Let's send a SIGUSR1T signal to process 324
kill -s SIGUSR1 324

Simple as that!

Or, in C:
int kill(pid_t pid, int signum);

CS 326: Operating Systems

36

Signals: Pros

Easy to use

They're simple!

No need to know anything other than the process ID

Custom functionality: SIGUSR* signals

Example: SIGHUP on apache/nginx/etc

CS 326: Operating Systems

37

Signals: Cons

= They're simple
= Can't send a picture as a signal

= Causes a jump in your program logic, whether you want
that or not

= (ex) sockets: we can listen when we want messages

CS 326: Operating Systems

38

Wrapping Up

= Given how basic signals are
(just a symbolic message... basically an int)
there has to be more to this story

= The next type of IPC we look at will be pipes

CS 326: Operating Systems

39

